7.4.1 Service Pipes

All service pipes, stormwater structures should be designed and constructed to ensure adequate capacity, strength, and water tightness to prevent leakage into the platform through blockage, running under pressure, or structural failure.

All service pipes installed within any fill should be flexible, or flexibly joined, so that they may deflect without breaking if the ground settles.

A record should be kept of the position, type, and size of all subsoil drains, and in particular of their outlets.

7.5 Trees and Shrubs

There are trees within the vicinity scattered across the property which might potentially cause damage through heaving as a result of root growth and/or settlement resulting from soil shrinkage from the moisture uptake of the roots. To reduce the chance of damage to the foundations, we recommend one of the following options:

- Any Trees/ plants that at their mature high will not be a minimum of that height away from the foundation should be removed including its major root structure.
- A root barrier should be designed and installed between the offending plant and the structure.
- Foundation should be taken to a depth no less than 1.0m where damage from the roots of a plant is unlikely.

If new trees, shrubs, or gardens are established near the structure, care should be taken to ensure:

- The vegetation does not interfere with any subfloor ventilation or services to the structure.
- Over-watering of the vegetation does not saturate the ground near the foundations.
- Trees or shrubs with the potential to develop significant root systems should be planted a minimum distance equal to the mature height of the plant away from the foundations.

SUSTAINABILITY

Considering sustainability as early as possible in a project's development, could lead to significant project opportunities and wider positive outcomes. Geotechnical opportunities for increased sustainability for this project include:

- Striping and stocking topsoil for reuse (dependant on presence/ levels of contaminants).
- Designing for cut and fill balance where possible.
- Reuse of site won materials, or using materials won from other sites including use of recycled crushed concrete aggregate for hard fill.
- Contributing site investigation data to the New Zealand Geotechnical Database (NZGD) to help reduce the site investigations needed in the future.

Using local consultants and contractors to reduce transport related emissions.

CONCLUSIONS

Following development of the site in accordance with our recommendations, we consider that: -

- a) The land in respect of which a consent is sought, or any structure on the land built in accordance with our recommendations, is unlikely to be subject to material damage by erosion, falling debris, subsidence, slippage, or inundation from any source; and
- b) Any subsequent use that is likely to be made of the land is unlikely to accelerate, worsen, or result in material damage to the land, other land, or structure by erosion, falling debris, subsidence, slippage, or inundation from any source; and
- Sufficient provision has been made for physical access to each allotment to be created by the subdivision.

10 PLAN REVIEW

Prior to an application for Building Consent, it is important we are given the opportunity to review the final development drawings to ensure the recommendations contained within this report have been followed and interpreted correctly. Following successful review of the development drawings, we are able to update this report to support an application for Building Consent.

11 VERIFICATION

Verification requirements will be provided once the form of the foundations has been determined.

12 LIMITATIONS

This report should be read and reproduced in its entirety including the limitations to understand the context of the opinions and recommendations given.

This report has been prepared exclusively for NZHG Gisborne Limited in accordance with the brief given to us or the agreed scope and they will be deemed the exclusive owner on full and final payment of the invoice. Information, opinions, and recommendations contained within this report can only be used for the purposes with which it was intended. LDE accepts no liability or responsibility whatsoever for any use or reliance on the report by any party other than the owner or parties working for or on behalf of the owner, such as local authorities, and for purposes beyond those for which it was intended.

This report was prepared in general accordance with current standards, codes and best practice at the time of this report. These may be subject to change.

Opinions given in this report are based on visual methods and subsurface investigations at discrete locations designed to the constraints of the project scope to provide the best assessment of the environment. It must be appreciated that the nature and continuity of the subsurface materials between these locations are inferred and that actual conditions could vary from that described herein. We should be contacted immediately if the conditions are found to differ from those described in this report.

13 REFERENCES

- Ambraseys, N., & Srbulov, M. (1995). Earthquake induced displacements of slopes. *Soil Dynamics and Earthquake Engineering*, 14(1), 59-71.
- Boulanger, R., & Idriss, I. (2014). CPT and SPT based liquefaction triggering proceedures. Report No. UCD/CGM-14, 1.
- Bray, J. D., & Travasarou, T. (2007). Simplified procedure for estimating earthquake-induced deviatoric slope displacement. *Journal of geotechnical and geoenvironmental engineering*, 133(4), 381-392.
- Cetin, K., Bilge, H. T., Wu, J., Kammerer, A. M., & Seed, R. B. (2009). Probabilistic model for assessment of cyclically induced reconsolidation (volumetric) strains. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 387-398.
- Chu, D. B., Stewart, J. P., Youd, T. L., & Chu, B. L. (2006). Liquefaction-Induced Lateral Spreading in Near-Fault Regions during 1999 Chi-Chi, Taiwan Earthquake. *Journal of Geotechnical & Geoenvironmental Engineering*, 1549-1565.
- Gisborne District Council. (2023). Tairāwhiti Maps. Retrieved 2022, from https://maps.gdc.govt.nz/H5V2_12/
- Gisborne District Council Te Kaunihera o Te Tairāwhiti. (2019). Tsunami inundation and evacuation maps.
- Gisborne District Council Te Kaunihera o Te Tairāwhiti. (2021). Minimum Requirements for Geotechnical Reports.
- Gisborne District Council Te Kaunihera o Te Tairāwhiti. (2022). Bearing Capacity and Geotechnical Investigation Requirements for Buildings.
- GNS Science. (2020). New Zealand Active Faults Database.
- GNS Science Te Pū Ao. (2016). Probabilitistic Mapping of Tsunami Hazard and Risk for Gisborne City and Wainui Beach. Wellington: GNS.
- Jibson, R. W. (2007). Regression models for estimating coseismic landslide displacement. Engineering geology, 91(2-4), 209-218.
- Mazengarb & Speden. (2000). Geology of the Raukumara area. *Institute of Geological and Nuclear Sciences* 1:250,000 geological map 6.
- Ministry of Business Innovation and Employment Hīkina Whakatutuki. (2015). Repairing and rebuilding houses affected by the Canterbury earthquakes Part C Technical Guidance. Wellington.

- New Zealand Geotechnical Society (NZGS) & Ministry of Business Innovation and Employment (MBIE). (2021, November). Earthquake Geotechnical Engineering Practice Module 1. Overview of the Guidelines, Rev 1. Wellington.
- New Zealand Geotechnical Society (NZGS) & Ministry of Business, Innovation and Employment (MBIE). (2021, November). Earthquake Geotechnical Engineering Practice Module 3. Identification, assessment and mitigation of liquefaction hazards Rev1. Wellington.
- Retrolens.co.nz. (n.d.). Retrieved from retrolens.co.nz.
- Robertson, P. K., & Cabal, K. L. (2014). Guide to Cone Penetration Testing for Geotechnical Engineering. 6th Edition. Gregg Drilling & Testing Inc.
- Standards New Zealand Te Mana Tautikanga O Aotearoa. (2004). NZS1170.5 Structural Design Actions: Part 5: Earthquake Actions- New Zealand. Wellington: Standards New Zealand.
- Tonkin & Taylor. (2015). Liquefaction vulnerability and Geotechnical Assessment Guidance for Gisborne District Council.
- Zhang, G., Robertson, P., & Brachman, R. (2002). Estimating liquefaction-induced groundsettlements from CPT for level ground. Canadian Geotechnical Journal, 39(5), 1168-1180.
- Zhang, G., Robertson, P., & Brachman, R. (2004). Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871.

14 GLOSSARY

Compressible Soils:

Compressible soils are those that will undergo a reduction in volume under an imposed load, such as the weight of fill or a structure. This occurs firstly as a result of the expulsion of air and water from the soil void spaces (primary settlement) and secondly due to a restructuring of the soil skeleton to take the load (secondary settlement).

Cyclic Softening:

Cyclic-softening is a related condition to liquefaction can also affect clay soils when subjected to cyclic-loading. Clay soils may significantly soften and led to bearing capacity failure, in addition to post-earthquake consolidation settlements may occur as a result of the earthquake shaking.

Expansive Soils:

Cohesive soils containing significant proportions of certain clay minerals can be subject to appreciable volume change caused by variations in soil moisture content, most notably between seasons or from the uptake of water through the root systems of trees and shrubs. This is also often referred to as soil reactivity or shrink-swell behaviour.

Lateral Spread:

Lateral spread of liquefied soils is the lateral displacement of blocks of land moving laterally towards a free edge (for example a riverbank) or within sloping ground. More lateral movement tends to occur closest to the edge with less movement further back. Lateral spreading may result in large permanent ground displacements including cracks, fissures, vertical officesets and overall settlement of the ground.

Lateral Stretch:

Lateral stretch is the amount of differential extension that a portion of land may experience during an episode of lateral spreading. The lateral stretch across a foundation is a main factor in foundation damage due to liquefaction and lateral spreading because of a large earthquake.

LIDAR

Light Detection and Ranging (LiDAR) is a method of remote sensing topographical survey.

Limit States:

Seismic design criteria for performance-based design. SLS, SLS2 & ULS are prescribed in NZS1170.5 (Standards New Zealand Te Mana Tautikanga O Aotearoa, 2004)

- Serviceability Limit State (SLS): Functional requirements for the serviceability limit state are assumed to be met if the structure or part can continue to be used as originally intended without the need for repair (SLS1) or can remain operational or continue to be occupied as appropriate (SLS2). SLS earthquakes are considered highly likely to occur during the lifetime of the structure.
- Ultimate Limit State (ULS): Functional requirements for the ultimate limit state are assumed to be met if:
 - People within, and adjacent to the structure are not endangered by the structure or part.

- b) Displacements of the structure are such that there is no contact between any parts of a structure for which contact is not intended, or between separate structures on the same site, if such contact would damage the structures or parts to the extent that persons would be endangered, or detrimentally alter the response of the structure(s) or parts, or reduce the strength of structural elements below the required strength.
- The structure does not deflect beyond a site boundary adjacent to which other structures can be built or collision between the structure and any adjacent existing structures cannot occur.
- d) There is no loss of structural integrity in either the structure or part.
- Intermediate Limit State (ILS): ILS is an intermediate seismic event between SLS & ULS although is not a code requirement. The behaviour of soils and geotechnical systems under earthquake shaking may be highly non-linear and even exhibit a pronounced 'step change' in performance with increasing intensity of shaking. For such cases, only considering performance at the SLS and ULS levels of shaking would fail to identify potentially poor and unacceptable performance at intermediate return periods of shaking.

Liquefaction:	Liquefaction is the term used to describe the temporary, but substantial, loss of strength and
LPI	stiffness which can occur in saturated, unconsolidated soils that are subjected to strong
Sec. 200	shaking. In addition to near-total strength loss, liquefaction may also result in the expulsion of
	sediment and water at the surface, ground and structure settlement, and in lateral (spreading)
	displacement of the ground.
LPI	Liquefaction potential index is a liquefaction damage index. LPI ranges between 0 and 100 and
	sites with an LPI of 5 indicate a high liquefaction risk and sites with LPI greater than 15 indicate
	very high risk (Iwasaki et al, 1982). Not to be used as a precise measure of liquefaction-induced
	ground damage but as an indicator of the general level of liquefaction severity.
LSN	Liquefaction Severity Number is a liquefaction damage index. LSN varies from 0 (representing
	no liquefaction vulnerability) to more than 100 (representing very high liquefaction vulnerability
	(van Ballegooy et al, 2013). LSN places greater importance (than LPI) on the thickness of the
	non-liquefied crust when the groundwater table is close to the ground surface. Not to be used
	as a precise measure of liquefaction-induced ground damage but as an indicator of the general
	level of liquefaction severity. LNS was developed based on the observations/ investigations
	from the Canterbury earthquake sequence
PGA:	Peak Ground Acceleration (PGA) is the maximum ground acceleration during an earthquake
	as a proportion of gravity.

Punch

Punch through failure occurs when a foundation punches through a crust of non-liquefiable material due to underlying liquefaction occurring and can lead to potential damage to foundations and/ or large settlements.

Technical Category:

Following the 2010 -2011 Canterbury earthquake sequence the Ministry of Business Innovation and Employment (MBIE) assigned three technical categories (TC1, TC2, TC3) across the residential 'green zone' for foundation investigation and design guidance focusing on one and two storey timber-framed dwellings. These categories are broadly defined as below:

- TC1: Liquefaction damage is unlikely in future large earthquakes. Standard residential foundation assessment and construction is appropriate.
- TC2: Liquefaction damage is possible in future large earthquakes. Standard enhanced foundation repair and rebuild options in accordance with MBIE guidance are suitable to mitigate against this possibility.
- TC3: Liquefaction damage is possible in future large earthquakes. Individual engineering assessment is required to select the appropriate foundation repair or rebuild option.
- TC2/ TC3 Hybrid: A site that straddles liquefaction settlement limits of TC2 and TC3 where the SLS settlements are assessed as being less than 50 mm but the ULS settlements are assessed at greater than 100mm.

Whilst this guidance is intended for residential buildings in the Canterbury region, they have been widely adopted to convey liquefaction vulnerability across New Zealand.

The Modules:

The New Zealand Geotechnical Society (NZGS) and MBIE jointly published a series of guidelines for Earthquake Geotechnical Engineering Practice. Revision 1 of the Modules was published in November 2021 and they provide guidance under section 175 of the Building Act 2004 to assist parties to comply with their obligations under the Building Act 2004. The following modules currently form the collection:

- Module 1: Overview of the guidelines
- Module 2: Geotechnical investigation for earthquake engineering
- Module 3: Identification, assessment, and mitigation of liquefaction hazards
- Module 4: Earthquake resistant foundation design
- Module 5: Ground improvement
- Module 5A: Specification of ground improvement for residential properties in the Canterbury region
- Module 6: Retaining walls

APPENDIX A SITE PLAN

APPENDIX B HAND AUGER TEST LOGS

Investigation erdeen Rd, Gisborne	Coordinates: System: Elevation: Located By:	NZTM 6.5m	(NZVD2016 lan/map	one penetro		vs / 50mm) 8	y: SS By: SS
D, with trace rootlets and silt; dark brown. Very loo , fine to medium.	ose; moist;	Water	Vane un	drained she	ometer (blov 6 ear strength,	vs / 50mm) 8 s _u (kPa)	Vane ID: N/A peak / residual
D, with trace rootlets and silt; dark brown. Very loo , fine to medium.	ose; moist;						
D; brown. Loose; moist; sand, fine to medium.							
				i			70 80
		,		And a second			
		Groundwater not encountered		in the state of th			
n: Light grey.							
i. Light grey.		,		DECEMBER OF THE PROPERTY OF TH			_
n: Grey with orange mottles. n: Wet.				- Control of the Cont			
				The state of the s			-
			T () and () and ()		PAULO CONTRACTOR		Standing water lev
	Termination: TARGET DEPTH	Termination: TARGET DEPTH		Termination: TARGET DEPTH	Termination: TARGET DEPTH	Termination: TARGET DEPTH ● Vane peak ○ Vane reside ▼ Vane UTP	Termination: TARGET DEPTH ● Vane peak ✓ Vane residual

(LAND	DEVEL!	Hand Aug	ger Borel		e Log		Pro	st ID: oject ID: eet:	HA02 24477 1 of 1	
Client Proje Locat Test :	ct: tion:	556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTI 6.5m			Lo Pre	st Date: gged By: epared By ecked By:		23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dynamic cor 2 Vane undr	e penetrom	strength, s _u (50mm) 8	Values Vane ID: N/A peak / residual (sensitivity)	
- 0.5	TS		SAND, with minor silt, with trace rootlets; dark b moist; sand, fine to medium.								
1.0_			SAND; brown. Loose; moist; sand, fine to mediu	ım.	incountered						
1.5_	Holocene Beach Deposits		1.50m: Grey with orange mottles. 1.70m: Light grey.		Groundwater not encountered						
2.0 _			2.40m: Wet.								
2.5											
Rema	arks:	1: 2.50r	Termination: TARGET DEPTH ibed in general accordance with NZGS 'Field Des	erintion of Sail and D	noki /20	05)	O Va	ne peak ne residual ne UTP	<- Gr	anding water levoundwater inflo	V

	LAND	DEVEL a ENGIN	Hand Aug	er Borel		e L	.00	ļ		F	rest II Projec Sheet:	t ID:	HA03 24477 1 of 1	
Clien Proje Local Test :	ct: tion:	556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne io geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTN 7m (N		2016)	6129	mE	L	repa	ate: d By: red By: ed By:		23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dy	namic c	4	netromete	situ To er (blow: 6	esting s / 50mr 8	n)	Values Vane ID: N/A peak / residual (sensitivity)	1300
- 0.5_	Uncontrolled Fill / Topsoil		SAND, with minor silt, with trace rootlets; dark brown moist; sand, fine to medium; trace metal fragments										<i>Teorismus</i>)	
.1.0_			SAND; brown. Loose; moist; sand, fine to medium.				>							
1.5_	Holocene Beach Deposits		1.80m: Grey with orange mottles.											
2.0_			1.90m: Wet.											
2.5			2.40m: Saturated.					The state of the s						
	Depti arks:	n: 2.50r	m Termination: TARGET DEPTH						Vane		al al		nding water le	
Mater No co	ials ar	re descri	ibed in general accordance with NZGS 'Field Descrip plied between shear vane and DCP values.	otion of Soil and Ro	ick' (20	05).		-	Vane			nii Nei oro	oundwater inflo oundwater outfl enetrate	

	LANID	DEVEL	Hand Aug			e Lo	og			Test ID: Project ID		
Client Proje Locat	ct: tion:	NZHG Geotec 556-56	chnical Investigation O Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTI 7m (I		16)	26mE		Sheet: Test Date Logged B Prepared Checked	y: SS By: SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dyna	mic cone 2		eter (blov	esting vs / 50mm) 8	Values Vane ID: N/A peak / residual (sensitivity)	
-	TS		SAND, with minor silt, with trace rootlets; dark be moist; sand, fine to medium.	rown. Loose;							(vortability)	
-			SAND; brown. Loose; moist; sand, fine to mediu	m.								
1.0_	iits											
.5_	Holocene Beach Deposits											
2.0 _			1.90m: Wet.					And the state of t				
- 2.5			2.20m: Saturated.		•		\ <	>				
lais '	Der#	N 0 50-	Tormination: TARCET DESTU			-			1000			500
	Depti irks:	1: 2.50r	n Termination: TARGET DEPTH					● Var	ne peak ne residu		Standing water le	

(LANE	DEVEL a ENGIN	Hand Augo	er Borel		e l	L	og				Test Proj She	ect ID:	HA05 24477 1 of 1	
Clien Proje Loca Test	ct:	556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne to geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZT 7m (Site	M NZVI	D20	16)	6121	ImE		Log Prep	Date: ged By: pared By: cked By:		23
Depth (m)	Geology	Graphic Log			Water		Dyna	mic co	4	In- netrome	6	Testi ws / 50	ng Omm)	Values Vane ID: N/A peak / residual	
	Uncontrolled Fill / Topsoil Ge	Grand Control	Material Description SAND, with minor silt, with trace rootlets and grave Loose; moist; sand, fine to medium; gravel, fine to subrounded to subangular.	l; dark brown. nedium,	Ň		E		10		150	20	0	(sensitivity)	
0.5_	nn		SAND; brown. Loose; moist; sand, fine to medium.	3											
1.0_															
1.5_	Holocene Beach Deposits														
2.0_			1.80m: Brownish grey. 1.90m: Wet.												
. 2.5			2.40m: Saturated.		.▼						1				
	Depti	h: 2.50i	m Termination: TARGET DEPTH					The second secon			e peak			anding water le	
Mater	ials a	re descr ion is im	ibed in general accordance with NZGS 'Field Descrip plied between shear vane and DCP values.	tion of Soil and Ro	ick' (20	05).			-	No. 0 1 140/5	e resid e UTP U		10 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	oundwater inflo oundwater outfl enetrate	

(LAND		Hand Auge Method: 5	0mm Hand Aug	ег					- 1	Proj She		HA06 24477 1 of 1	
Clien Proje Local Test :	ct: tion:	556-56	chnical Investigation io Abeerdeen Rd, Gisborne io geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTI 6.2m		D201		7mE		Log Pre	t Date: ged By: pared By: cked By:		!3
Depth (m)	Geology	Graphic Log	Material Description		Water	Dy	namic 2	ndraine	enetrome 4 ed shear s	6	ws / 50	Omm) Pa)	Values Vane ID: N/A peak / residual (sensitivity)	
-	Uncontrolled Fill / Topsoil		SAND, with minor silt, with trace rootlets and gravel; of Very loose; moist; sand, fine to medium; gravel, fine,	dark brown. subangular.		ļ								
0.5_	ו		SAND; brownish orange. Loose; moist; sand, fine to r	nedium.										
1.0_	Holocene Beach Deposits					Strong minister minis	* * *							
1.5_	Holocer		1.60m: Wet.				\(\)	X						
2.0_			1.80m: Heavy orange mottling. 1.90m: Brownish grey. Saturated. 2.00m: Brownish grey with orange mottles. Poor recovery > 1	50%.	•									
2.5_														
-		á												
Hole Rema		1: 2.20	Termination: HOLE COLLAPSE					\dashv	Van	e peak	:	▼ Sta	inding water lev	el
Mater	ials ar	e descr	ibed in general accordance with NZGS 'Field Descriptio plied between shear vane and DCP values.	n of Soil and Ro	ck' (20	05).			200-213-22	e resid e UTP ur		- A	oundwater inflovoundwater outfloo	

	LAND	DEVEL.	Hand Aug	er Borel		e L	og				10000	t ID: ject ID: et:	HA07 24477 1 of 1	
Clien Proje Local	ct: tion:	556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTI 6m (l		016)	6090	mE		Test Log Prej	t Date: ged By: pared By: cked By:	12/09/202 SS SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dyn Va	amic co	4	netromete shear st	situ T er (blov 6	resti ws / 50	Omm)	Values Vane ID: N/A peak / residual (sensitivity)	
- 0.5_	Uncontrolled Fill / Topsoil		SILT, with minor sand, with trace rootlets; dark bromoist; non-plastic; sand, fine to medium; trace characteristics; sand, fine to medium.	own. Stiff; arcoal.										
1.0_			SAND; light brown with orange mottles. Loose; motto medium. 1.00m; Brownish grey with orange streaks.	oist; sand, fine										
1.5_	Holocene Beach Deposits		1.20m: Wet. 1.50m: Saturated.		▼.									
2.0			1.70m: Poor recovery > 30%.							100000000000000000000000000000000000000				
2.5_														
		n: 2.00r	n Termination: HOLE COLLAPSE						Vane	peak		▼ Sta	inding water lev	vel
Rema Mater	ials ar	e descr	ibed in general accordance with NZGS 'Field Descri plied between shear vane and DCP values.	iption of Soil and Ro	ck' (20	05).		-	Vane	UTP		- A	oundwater inflo	

	LANE	DEVEL a ENGIN	OPMENT	uger Borel		e L	-00]			Test I Projed Sheet	ct ID:	HA08 24477 1 of 1	
Clien Proje Local Test :	ct: tion:	556-56	chnical Investigation 60 Abeerdeen Rd, Gisborne to geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTI 6.5m	М	/D201		mE		Prepa	Date: ed By: ed By: ked By:		23
Depth (m)	Geology	Graphic Log			ye.	D	ynamic o	4	netromete	situ T er (blow 6	esting s / 50m 8	g m)	Values Vane ID: N/A	
ē.	ğ	Gra	Material Description SAND, with minor silt, with trace rootlets; dar	de beneve Manufacca	Water		50	10		150	200		peak / residual (sensitivity)	
1- 1-	Topsoil		moist; sand, fine to medium.	K DIOWII. Very 1005e,						200	***************************************			
1	2 1		SAND; light brown. Loose; moist; sand, fine t	to medium.)								
0.5_						1	_							
4														
1.0														
-										1				
	ch Deposits													
1.5_	olocene Beach Deposits										***************************************			
9	Ī		1.60m: Brownish grey.				~							
-			1.80m: Brownish grey orange streaks.											
2.0_			2.00m: Dark brown. Wet.											
-			2.30m: Brownish grey.											
2.5	-		2.40m: Saturated.		•									
]														
22 (-														
201-7017		n: 2.50	m Termination: TARGET DEPTH) Vane	peak		▼ Sta	nding water lev	vel
tema	arks:							() Vane	e residu	al	← Gro	oundwater inflo	PW

	AND	DEVELO S ENGIN	Hand Aug	ger Borel		e Lo	g		Test ID: Project ID: Sheet:	HA09 24477 1 of 1	
Client: Projec Locati Fest S	t: ion:	556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTM 6.5m		2016)	94mE	Test Date: Logged By: Prepared B Checked By	y: SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dynar 2	nic cone p ? e undraine		u Testing	Values Vane ID: N/A peak / residual (sensitivity)	50,00
0.5_	Topsoil		SILT, with minor sand, with trace rootlets; dark to moist; non-plastic; sand, fine. \(0.20m: SAND, with minor silt. Sand, fine to medium; tr	50							
1.0_			SAND; brownish orange. Loose; moist; sand, fir	ne to medium.							
1.5_	Holocene Beach Deposits		1.50m: Brownish grey.								
2.0_			2.00m: Wet.								
2.5	17		2.40m: Saturated.		•						
lole D		n: 2.50r	m Termination: TARGET DEPTH			Transferred Company	100 100 100 100 100 100 100 100 100 100	● Vane pe		Standing water lev	

(LAND	DEVEL a ENGIN	OPMENT	uger Borel		e Loç	3		Test ID: Project ID: Sheet:	HA10 24477 1 of 1	
Clien Proje Local	ct: tion:	556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne io geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTM 6.5m			nE	Test Date: Logged By: Prepared By Checked By	12/09/202 SS : SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dynamic 2	4	In-situ	resting ws / 50mm) 8	Values Vane ID: N/A peak / residual (sensitivity)	Service .
-			SILT, with minor sand, with trace rootlets; da moist; non-plastic; sand, fine.	rk brown. Stiff;		100000000000000000000000000000000000000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Schouvity)	-
-	soil		0.20m: SAND. Sand, fine to medium.								
0.5_	Topsoil										
			SAND; brownish orange. Loose; moist; sand	fine to medium.							
-			3	,							
1.0_											
3- 27						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1.5_	ch Deposits										
-	Holocene Bead		1.70m: Brownish grey.				*				
2.0_											
1			2.00m: Wet.			<u> </u>					
-			22 40m; Dork brown Saturated		T						
2.5_			2.40m: Dark brown. Saturated.				\				
-											
lole	Denti	n: 2.50i	m Termination: TARGET DEPTH		16			Von		anding weeks - t-	_
Rema		2.001	Ferning 1/31/Obj Did III				0			anding water lev	

		OPMENT	uger Boreh	er			Test ID: Project ID: Sheet:	HA11 24477 1 of 1	
Client: Project: Location Test Site	: 556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTN 7m (N	ngan amana dan kecamatan m a lambahan perjakan dan basi Kalah	06mE	Test Date: Logged By: Prepared By Checked By		3
Depth (m) Geology	Graphic Log	Material Description		Water	2	In-site penetrometer (b 4 6 ned shear streng 100 150	8	Values Vane ID: N/A peak / residual (sensitivity)	
Uncontrolled Fill / C	Dedo	SAND, with trace silt and gravel; dark brown. fine to medium; gravel, fine to medium, subrousubangular.	Loose; moist; sand, unded to	_				(sonsuvity)	-
0.5_		SAND; brownish orange. Medium dense; mois medium.	st; sand, fine to			al property of the control of the co			
-									
1.0_				ре					
h Deposits				Groundwater not encountered					
Holocene Beach Deposits				Groun					
-						and a construction of the			
2.0									
-		2.30m: Wet.							
2.5				1		distribution of the state of th			
-						and an incompanies of the contract of the cont			
Place of the second second	oth: 2.50	m Termination: TARGET DEPTH				Vane peVane res		anding water lever	

	LAND	DEVEL!	Hand Aug	ger Borek		e Lo	og			P	est ID: roject ID: heet:	HA12 24477 1 of 1	
		556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTN 6.8m		2016)		mE	L	est Date: ogged By: repared By hecked By		3
Depth (m)	Geology	Graphic Log	Material Description		Water	Dyna	amic cor	4	shear str	situ Te or (blows	esting / 50mm) 8	Values Vane ID: 2888 peak / residual (sensitivity)	
0.5	Topsoil		SILT, with minor sand, with trace rootlets; dark be moist; non-plastic; sand, fine. 0.30m: SAND, with minor silt. Sand, fine to medium. 0.40m: Black.					•				101 / 20 (5.1)	
1.0_			SAND; brownish orange. Very loose; moist; sand medium.	d, fine to		THE CONTROL OF THE CO	*						
1.5_	Beach Deposits												
	Holocene		2.00m: Wet.				<						
2.5			/2.50m: Saturated.		▼	ов на поставления обще поливителения папада выпечения опециального							
-													
	Depth arks:	1: 2.50r	n Termination: TARGET DEPTH					-		peak residua		anding water leve oundwater inflow	

	LANE	DEVEL S ENGIN	Hand Aug	er Boreh		e Log	g		Test Proje Shee	ect ID:	HA13 24477 1 of 1	
	ct: tion:	NZHG Geotec 556-56 Refer t	chnical Investigation O Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	57098 NZTN 6.8m				Test Logg Prep Chec	Date: jed By: ared By: ked By:	12/09/202 SS : SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	2	4	netrometer 6 shear stre	(blows / 500 8 ength, su (kP	nm)	Values Vane ID: 2888 peak / residual	
_	в	9	SILT, with minor sand, with trace rootlets; dark bromoist; non-plastic; sand, fine.	own. Stiff;	s	50	10	, 19	200		(sensitivity)	_
-	Topsoil	18	↑0.30m: SAND, with minor silt. Sand, fine to medium.			0					116 / 28 (4.1)	COMMON AND AND AND AND AND AND AND AND AND AN
0.5_			SAND; brownish orange. Loose; moist; sand, fine	to medium.								
-						DOMESTIC OF THE PARTY OF THE PA						
1.0_						THE THE PERSON NAMED IN COLUMN 1						
-	Beach Deposits											
-	Holocene Beach											
12			1.90m: Brownish grey.				X					
2.0_			2.00m: Wet.			ALTERNATION CONTRACTOR						
:- :-			/2.50m: Saturated.									
2.5_	2		<i>V</i>		•							
15 15 15						W						
		n: 2.50r	m Termination: TARGET DEPTH	is .) Vane p	peak	▼ Sta	anding water lev	
08 3	irks:		ibed in general accordance with NZGS 'Field Descr	intion of Call I D-	-11 (20	a=\		Vane r		100 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	oundwater inflov	

	LAND	DEVEL S ENGIN	Hand Auge	er Borek		e l	_0	g			Pro	st ID: oject ID: eet:	HA14 24477 1 of 1	
	ct: tion:	556-56	chnical Investigation 60 Abeerdeen Rd, Gisborne to geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTI 6.8m Site	M (NZ)	/D20		03mE		Lo Pro	st Date: gged By: epared By: ecked By:		3
Depth (m)	Geology	Graphic Log			94		ynam 2	12.30.32.00	penetro 4	meter 6	tu Tes (blows /	ting 50mm) 8	Values Vane ID: 2888	
e De	Geo	Gra	Material Description SILT, with minor sand, with trace rootlets; dark brow	statistic — In orbital	Water		Vane 50		ned shea	ar strei		kPa)	peak / residual (sensitivity)	1
0.5	Topsoil		moist; non-plastic; sand, fine. SAND; brownish orange. Very loose; moist; sand, fi medium.										57 / 26 (2.2)	
11.5	Holocene Beach Deposits		↑1.60m: Brownish grey.											
- 2.0 _			``1.90m: Wet.				*							ad discovery of the second of
2.5			/2.50m: Saturated.		▼									
-														
	Depti arks:	n: 2.50	Termination: TARGET DEPTH						• v	ane p	eak	▼ Sta	inding water lev	el
08 - 0	8 59	re descr	ibed in general accordance with NZGS 'Field Descrip'	tion of Soil and Ro	ck' (20	05).				ane re		10 1877 - 1870	oundwater inflow	

	LAND	DEVEL S ENGIN	Hand Auge	er Boreh		e L	og			Pi	est ID: roject ID: neet:	HA15 24477 1 of 1	
Clien Proje Local	ct: tion:	556-56 Refer t	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	57098 NZTN 6.8m		2016			Te Lo Pr Cl	est Date: ogged By: repared By necked By	12/09/202 SS v: SS	23
Depth (m)	Geology	Graphic Log			ter		2	4	netromete	situ Te: er (blows / 6 rength, su	50mm) 8	Values Vane ID: 2888	
Dec	ğ	Gra	Material Description SILT, with minor sand, with trace rootlets; dark brow	vn. Stiff;	Water		50	10			200	peak / residual (sensitivity)	100
-	Topsoil		moist; non-plastic; sand, fine. 0.40m: SAND, with minor silt. Sand, fine to medium.			O projection on the contract of the contract o		•				86 / 20 (4.3)	
0.5_			SAND; brownish orange. Very loose; moist; sand, fi medium.	ne to									
1.0_							•						
-	osits												
1.5_	Holocene Beach Deposits												
2.0_			2.00m: Brownish grey. Wet.										
2.5			2.40m: Saturated.	,	▼			<					
-							1						
		ı: 2.50r	m Termination: TARGET DEPTH					<u>_</u>	Vane	peak	▼ s	tanding water lev	_ v
08 - 0	rks:		ibed in general accordance with NZGS 'Field Descrip					(residual		roundwater inflo	W

APPENDIX C CONE PENETRATION TEST LOGS

APPENDIX D LIQUEFATION ANALYSIS RESULTS

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:07:30 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380559\L\L\24477-Specialist Software Models-Liquefaction- SLS-380559 (ID 380559).clq

CLiq v.3.5,2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:07:31 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380559\L\L\24477-Spedalist Software Models-Liquefaction- SLS-380559 (ID 380559).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:07:32 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CP9-8ACA-6EF80FEBB7A9\0\380000-380999\380559\L\L\24477-Specialist Software Models-Liquefaction- SLS-380559 (ID 380559).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:24 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380561\L\L\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5,2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\\380000-380999\380561\L\L\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

4

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\380000-380999\380561\\L\\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\\D2\152DC\18A-601D-4CF9-8ACA-6EF80FEB87A9\\0\0380000-380999\380561\\L\\\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\\D2\\152DC\18A-601D-4CF9-8ACA-6EF80FEB87A9\\0\\380000-380999\380561\\L\\\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:28 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380561\L\L\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:26:22 pm Project file: M:\LDE - Project\D2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\\\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:26:26 pm Project file: M:\LDE - Project\D2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\\\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:30 pm Project file: M:\LDE - Project\D2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

This software is licensed to: LDE Ltd CPT name: ULS- CPT01 (CS)

2

This software is licensed to: LDE Ltd CPT name: ULS- CPT02 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:31 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\U.\24477-Spedailst Software Models-Liquefaction - ULS-333265 (ID 333265).dq

This software is licensed to: LDE Ltd CPT name: ULS- CPT02 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:31 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\U.\24477-Spedailst Software Models-Liquefaction - ULS-333265 (ID 333265).dq

This software is licensed to: LDE Ltd CPT name: ULS- CPT03 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:32 pm Project file: M:\LDE - Project\\D2\152DC\18A-601D-4CF9-8ACA-6EF80FEBB7A9\\0\\333000-333999\\333265\\\L\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

5

This software is licensed to: LDE Ltd CPT name: ULS- CPT03 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:32 pm Project file: M:\LDE - Project\\D2\152DC\18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\\L\\\24477-Spedailst Software Models-Liquefaction - ULS-333265 (ID 333265).dq

6

This software is licensed to: LDE Ltd CPT name: ULS- CPT04 (CS)

This software is licensed to: LDE Ltd CPT name: ULS- CPT04 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:33 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\333000-333999\333265\L\L\24477-Specialist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

This software is licensed to: LDE Ltd CPT name: ULS- CPT05 (CS)

This software is licensed to: LDE Ltd CPT name: ULS- CPT05 (CS)

10

APPENDIX E SLOPE STABILITY OUTPUTS

NZHG Gisborne Limited

GEOTECHNICAL ASSESSMENT REPORT FOR PROPOSED RESIDENTIAL DWELLING, LOT 11 AND LOT 12

556-560 Aberdeen Road, Te Hapara, Gisborne

Project Reference: 24477 October 13, 2023

DOCUMENT CONTROL

Version	Date	Comments
01	13/10/2023	Issued for Resource Consent. Plan review required prior to submission for Building Consent.

Version	Issued For	Date	Prepared By	Reviewed & Authorised By
01	Issued for Design	13/10/2023	+ Factoriara	Daniel S.B.
			Sahil Sathwara	Dan Bond
			B.Tech (Civil), MEngNZ	CMEngNZ, PEngGeol.
			Geotechnical Engineer	Associate Engineering Geologist

CONTENTS

1	INT	RODUCTION	. 1
2	PRO	OPOSED DEVELOPMENT	. 1
3	SIT	E STUDY	. 3
	3.1	Site Description.	. 3
	3.2	Geomorphology and Geology	
	3.3	Geotechnical Risks	
	3.4	Historical Aerial Photographs	. 3
4	GEO	OTECHNICAL INVESTIGATION	. 5
	4.1	Development wide Investigation Scope	. 5
	4.2	Lot 11 and Lot 12 Investigation Scope	. 5
5	GR	OUND CONDITIONS	. 6
	5.1	Site Stratigraphy	. 6
	5.2	Groundwater	
6	NAT	FURAL HAZARDS	. 7
	6.1	Definition & Legislation	. 7
	6.2	Seismic Hazard	
	6.3	Liquefaction and Cyclic Softening Assessments	. 8
	6.4	Lateral Spreading and Lateral Stretch	
	6.5	Liquefied Bearing	14
	6.6	Equivalent MBIE Technical Category	15
	6.7	Flood Hazard	15
	6.8	Tsunami	15
	6.9	Expansive Soils	16
	6.10	Consolidation Settlement	16
	6.11	Natural Hazards Summary	16
7	ENC	GINEERING RECOMMENDATIONS	
	7.1	Site Contouring and Topsoiling	
	7.2	Access Road Construction	17
	7.3	Foundation Recommendations	
	7.4	Surface Water	
	7.5	Trees and Shrubs	
8		STAINABILITY	
9		NCLUSIONS	
10		AN REVIEW	
11		RIFICATION	
12		ITATIONS	
13	REF	FERENCES	20
14	GIC	OSSARY	1

APPENDIX A: SITE PLAN

APPENDIX B: HAND AUGER TEST LOGS

APPENDIX C: CONE PENETRATION TEST LOGS APPENDIX D: LIQUEFACTION ANALYSIS RESULTS

APPENDIX E: SLOPE STABILITY OUTPUTS

INTRODUCTION

Land Development & Engineering Ltd (LDE) was engaged by NZHG Gisborne Limited to undertake a geotechnical investigation of a site located at 556 & 560 Aberdeen Road, Gisborne (Figure 1).

The 2,700m² site is proposed to be subdivided into 12 Lots for residential development (Figure 1). This geotechnical report pertains to proposed Lot 11 and Lot 12, 556 & 560 Aberdeen Road, Gisborne.

Figure 1 556-560 Aberdeen Road (outlined in blue), with the proposed subdivision outlined in yellow, Lot 11 and 12 highlighted in white. Image source: Tairāwhiti Maps (Gisborne District Council, 2023) Accessed: September 2023

PROPOSED DEVELOPMENT

A 12-lot subdivision is proposed at 556 & 560 Aberdeen Road across the property with the legal description Lot 2 DP 1585, PT Lot 1 DP 1585, and Lot 1 DP 1817. The proposed development consists of 7 structures formed of four double-storey duplex buildings, one single-storey building and two standalone dwellings (Figure 1).

The proposed driveway is located centrally of the site to provide access between lots and Aberdeen Road. Proposed access and building platform locations are shown in Figure 1 and Appendix A.

A 93.6m² double storey building is proposed across Lot 11 and 12 (Figure 2), with timber framing in accordance with NZS3604 (2011), with weatherboard and sheet wall cladding, profiled metal roofing and a concrete floor or suspended timber floor.

The purpose of this investigation was to determine and assess the nature of the ground beneath the building site to inform our geotechnical recommendations for site development and design of the building's foundations. The investigation was completed to satisfy the requirements of Gisborne District Council (2022) for Resource and Building Consent.

Figure 2: (From top to bottom): Floor plans for proposed duplex building across Lot 11 and 12, alongside the architect's drawing (Lot 11 and 12 is labelled). Image Source: Client supplied.

SITE STUDY

3.1 Site Description

The site is located within the established suburb of Te Hapara, Gisborne, approximately 2.0km northwest of the Gisborne CBD. The site is generally flat and is elevated between 6m and 7m (New Zealand Vertical Datum (NZVD) 2016). 556 (LOT 2 PT 1 DP 1585) & 560 (LOT 1 DP 1817) Aberdeen Road, occupy a combined area of approximately 2,700m².

3.2 Geomorphology and Geology

556 & 560 Aberdeen Road, occupy flat lying ground which, at one time, comprised the historic foreshore of Tūranganui-a-Kiwa (Poverty Bay). The 1:250,000 geological map of the region (Mazengarb & Speden, 2000) indicates the site is underlain by Holocene aged beach deposits which consist predominantly of sand. The Taruheru River is located approximately 120 m to the north; elevation falls relatively gently towards the river until the riverbank, which falls around 6m over some 25m laterally.

The GNS Active Fault Database does not identify any active fault traces or any fault buffer zones affecting the site. The nearest mapped active fault is the Repongaere Fault, located approximately 14 km to the north-west of the properties (GNS Science, 2020).

3.3 Geotechnical Risks

Our review of Gisborne District Council's (GDC) GIS viewer, Tairāwhiti Maps (Gisborne District Council, 2023), and GNS Science's Active Faults Database (GNS Science, 2020) revealed the following:

- 556 & 560 Aberdeen are mapped as being within an area of moderate liquefaction risk.
- The nearest active fault is the Repongaere Fault, located approximately 14 km to the north-west of the properties.
- The site is mapped as yellow tsunami evacuation zone.

In addition to the risk of liquefaction, the nearby riverbanks of the Taruheru River presents the possibility of lateral spreading in a liquefaction-inducing earthquake event.

Our review of the 2023 aerial photographs indicates that the properties were not severely impacted by flooding associated with Cyclone Gabrielle.

3.4 Historical Aerial Photographs

Historical aerial imagery was reviewed as part of this investigation using Retrolens and Google earth aerial

photography, which revealed the following: -

- Residential dwellings were constructed at both properties prior to 1942 (the earliest available aerial photograph with sufficient resolution).
- In the 1942 aerial photograph there appears to be some form of structure/s, a pile of material, or disturbance to the ground beneath the southwest corner of 556 Aberdeen Road. However, the resolution of the aerial photography is not sufficient to reliably determine what occupied the southwest corner of the property.
- A large shed was constructed in the southwest corner of 556 Aberdeen Road sometime between 1942 and 1966, along with smaller auxiliary structures at both properties.
- Several small structures or 'lean-tos' were constructed between 1966 and 1988 across both properties.
- A shed/garage was constructed in the south-east corner of 560 Aberdeen Road.
- Between 1988 and 2021 additions were carried out to the garage/shed in the south-east corner of 560.
 - and the large shed in the southwest corner of 556. The water tank for 560 Aberdeen Road was removed, along with several of the smaller auxiliary structures across both properties.

Figure 3: Historical aerial imagery of the Aberdeen Road Subdivision (Source: (Retrolens.co.nz)), with the location of the individual lots marked in yellow. (a) Aerial imagery from 1942, (b)1966, (c) 1977, (d) 1988.

GEOTECHNICAL INVESTIGATION

4.1 Development wide Investigation Scope

Our investigation of the entire site included the following: -

- A walkover assessment of the site and immediate surrounding area to assess its geomorphology and identify any features which may influence our engineering recommendations, or the long-term performance of the ground.
- 15No. 50mm diameter, hand auger boreholes drilled to refusal or 2.5m target depth at the proposed building locations, with measurements of undrained shear strength taken every 0.2m, and associated DCP's to the 2.5m target depth.
- Complete liquefaction analysis of the Five CPTs which were undertaken across the site during the due diligence phase, three at 556 Aberdeen Road and two at 560 Aberdeen Road (Figure 4).

4.2 Lot 11 and Lot 12 Investigation Scope

No geotechnical investigations were undertaken within the proposed lot areas, due to presence of the existing driveway, trees, and vegetation.

Site wide test locations are shown on the Geotechnical Investigation Plan (Figure 4), and as Appendix A. Logs with details of the relevant testing completed are presented as Appendices B and C.

Figure 4: Geotechnical Investigation Plan for proposed development, Lot 11 and 12 highlighted in white.

5 GROUND CONDITIONS

This section addresses the ground conditions encountered during our investigations.

5.1 Site Stratigraphy

5.1.1 Development Wide

Ground conditions are reasonably consistent across the site. Typically, the property is underlain by topsoil and/or fill to a depth between 0.3m and 0.8m below ground level (bgl), which overlies sand/ silt mixtures to a depth of 1.0m. Underlying this, medium dense to dense sand was encountered to around 6.5m to 7.0m.

Deposits of firm clay were encountered from around 6.5m to 7.0m, with stiff silt/clay mixtures extending to depth from approximately 13m.

A copy of the test logs is provided as Appendix B.

5.1.2 Lot 11 and Lot 12 Site Specific Nuances

The site is generally level and ground conditions were found to be relatively comparable across the site. The nearest available geotechnical investigations data, hand auger boreholes HA12 and HA15 from Lot 9 & 10 represents the Topsoil/ Fill depths of 0.5m and 0.6m from the existing ground surface and Dynamic penetrometer

results ranged between 0.5 and 4 blows per 50mm. Therefore, we assume the results will comparably be similar within this proposed lot areas.

5.2 Groundwater

Groundwater was encountered at depths of between 1.50m and 2.88m across the site. A low-bound groundwater level of 1.65m bgl was adopted in our assessments. Given that testing was completed in the wettest year on record for Gisborne, the groundwater level adopted is considered significantly elevated from typical levels and no further allowance has been applied for seasonal variations.

NATURAL HAZARDS

6.1 Definition & Legislation

This section summarises our assessment of the natural hazards that might affect the site including earthquake, tsunami, erosion, volcanic and geothermal activity, landslip, subsidence, sedimentation, wind, drought, fire, or flooding, that might affect the property, as generally defined in Section 106 of the Resource Management Act., as well as the hazards as defined in Section 71(3) of the Building Act (2004), including erosion (including coastal erosion, bank erosion, and sheet erosion), falling debris (including soil, rock, snow and ice), subsidence, inundation (including flooding, overland flow, storm surge, tidal effects and ponding), and slippage.

6.2 Seismic Hazard

6.2.1 Surface Fault Rupture

The GNS NZ Geology Web-map and Active Faults Database (GNS Science, 2020) do not show any faults passing beneath the subject site. There also does not appear to be any surface expressions which would indicate the presence of an active fault beneath or within close proximity to the site. We therefore consider the surface fault rupture risk to be low.

6.2.2 Site Subsoil Class

Based on the published geological information for the region, discussed in Section 3.2, and obtained site-specific CPT data, we consider that a seismic site subsoil classification of D- "Deep or Soft Soil" is appropriate as defined by NZS 1170.5 (2004).

6.2.3 Seismic Actions

In accordance with the NZ Building Code and NZS 1170.5 (2004) the structure proposed is considered Importance Level 2 (IL2) with a design working life of 50 years, therefore:

- The Serviceability Limit State (SLS) design earthquake has an annual exceedance probability (AEP) of 1/25, and:
- The Ultimate Limit State (ULS) design earthquake has an AEP of 1/500.

An intermediate state event (ILS) has been considered in accordance with Gisborne District Council's (GDC's) requirements. This design case has an AEP of 1/100.

The modules of the Earthquake Geotechnical Engineering Practice series jointly published by Ministry of Business Innovation and Employment (MBIE) and the New Zealand Geotechnical Society (NZGS) (2021) provides guidance under Section 175 of the Building Act (2004), to assist with ensuring compliance with the Act. We have adopted the ground motions published within Module 1 (2021) for geotechnical design which are summarised in Table 1.

Table 1 - Summary of adopted seismic parameters.

Seismic Parameters	SLS	ILS	ULS
Horizontal Peak Ground Accelerations (PGA), g	0.12	0.28	0.65
Effective magnitude, Mw	6.3	6.8	7.5

6.3 Liquefaction and Cyclic Softening Assessments

6.3.1 Liquefaction

Liquefaction is the term used to describe the temporary, but substantial, loss of strength and stiffness which can occur in saturated, unconsolidated soils that are subjected to strong shaking. In addition to near-total strength loss, liquefaction may also result in the expulsion of sediment and water at the surface, ground, and structure settlement, and in lateral (spreading) displacement of the ground.

The liquefaction potential was assessed with site-specific CPT data using specialist geotechnical software (CLiq Ver.3.3.1.13) in general accordance with NZGS/ MBIE Module 3 Guidance (2021).

Liquefaction triggering was assessed using the method proposed by Boulanger and Idriss (2014).

Liquefaction-induced, free-field, vertical, volumetric strains were estimated using the method proposed by Zhang et al (2002)

A low-bound groundwater level of 1.65m bgl was adopted as discussed in Section 5.2.

6.3.2 Cyclic-Softening

Cyclic softening is a phenomenon that occurs when the strength and stiffness of a soil decreases due to repeated cyclic loading such as that resulting from strong seismic shaking. Relatively soft clay soils are commonly

susceptible to this phenomenon, which can be accentuated where these soils are sensitive i.e., there is a significant difference between the soil's peak and residual shear strength.

Due to the presence of the clay rich estuarine soils at this site, we have undertaken a cyclic softening analysis for the ULS design case. The Gisborne 2007 earthquake was of comparable magnitude and PGA to the ILS design case. No liquefaction or induced settlements were identified within the proximity of the subject site because of this earthquake. Accordingly, cyclic softening has been assessed for the ULS design case only.

Our assessments assumed:

- An N_{kt} value of 14 for the clay-like soils, based on previous work undertaken proximally by LDE within the estuarine deposits.
- An estimate of the maximum, post-liquefaction, volumetric strain based on the work by Robertson and Cabal (Robertson & Cabal, 2014) which recommends a default value of 0.5% for clay-like soils.

6.3.3 Liquefaction and Cyclic Softening Results

The results of our analyses is summarised in Table 2; detailed outputs are included as Appendix D.

The Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN) are indices used to assess the general performance level of liquefied deposits in accordance with the NZGS/MBIE Module 3 Guidance (2021).

Our analyses indicate that liquefaction-induced settlements are likely to be negligible (<5mm) in a design SLS seismic event.

Under the ILS design case, liquefaction-induced settlements are estimated to be between 20mm and 50mm. As discussed in Section 6.3.2, no liquefaction, or liquefaction-induced settlements were identified within the proximity of the subject site as a result of the Gisborne 2007 earthquake, which had almost identical ground motions. Accordingly, we consider it unlikely that liquefaction would be realised under ILS seismic shaking and conclude that the software is likely to be over-estimating liquefaction potential.

Table 2 - Summary of liquefaction analysis results.

Limit	CPTI	TID LPI	LSN	Estimated Seismic Volumetric Settlements (mm) [Limited to 10m] (3)			Effects of		
State / AEP			LPI	LSN	Liquefaction	Cyclic Softening	Total Seismic Settlement	Liquefaction	
	CPT	-01	0	0	<5 [<5]	-	<5 [<5]		
	CPT-	-02	0	0	<5 [<5]	(#)	<5 [<5]		
SLS 1/25 year	CPT-	-03	0	0	<5 [<5]	*	<5 [<5]	L0	
1/25 year	CPT	-04	0	0	<5 [<5]		<5 [<5]		
	CPT-	-05	0	0	<5 [<5]		<5 [<5]		
	CPT	-01	2	8	~30 [~25]	ė:	~30 [~25]	L2	
ILS	CPT	-02	4	12	~50 [~45]	: * ::	~50 [~45]		
1/100 year	CPT	-03	2	5	~20 [~20]	2	~20 [~20]		
	CPT-04		4	12	~45 [~40]	-	~45 [~40]		
	CPT	-05	3	10	~45 [~30]	*	~45 [~30]		
	CPT	-01	18	23	~75 [~70]	~45	~120 [~70]		
150000 30000	CPT-02 CPT-03		18	23	~85 [~75]	~40	~125 [~75]	L3	
ULS 1/500 year			16	19	~70 [~65]	~40	~110 [65]		
	CPT-0	-04	20	24	~85 [~80]	~40	~125 [65]		
	CPT	-05	18	23	~85 [~65]	~40	~125 [65]		
	Effects of liquefaction Key		Insignificant	L1: Mild	L2 Moderate	L3: High	L4 Severe	L5: Very Severe	

Notes:

- Liquefaction triggering Boulanger and Idriss (2014) methodology limited to upper 15m. Limited to 10m of soil profile shown in square brackets [].
- Settlements are free-field estimated settlements and do not include any building-induced settlements.
- Effects of Liquefaction based on NZGS Module 3 (New Zealand Geotechnical Society (NZGS) & Ministry of Business, Innovation and Employment (MBIE), 2021)

Under design ULS seismic shaking, settlements in the order of 110mm to 125mm are estimated. However, given the rationalisation to the Gisborne 2007 earthquake, discussed above, we consider that total, free-field, seismic settlements are likely to less than 100mm.

6.4 Lateral Spreading and Lateral Stretch

Lateral spreading typically occurs in sloping ground or level ground close to slopes or waterways and is most commonly caused by loss of strength due to earthquake-induced liquefaction. Typically, the degree of lateral movement diminishes as the distance from the waterway, or free face, increases.

Liquefaction-induced lateral displacements were estimated in CLiq software using the method proposed by Zhang et al (2004), utilising an Ic cut-off of 2.6, clean sand and overburden corrections, and inferred soil unit weights.

The methods available to predict lateral displacements from CPT data. Both these methods are based upon limited case studies and as such have inherent limitations for broader application. They are known to be highly inaccurate with predictions versus empirical data varying by a factor of two (NZGS Module 3 (2021)) or possibly more. Accordingly, lateral spreading potential was also assessed through numerical modelling, using Slide 2 (Version 9.027) by Rocscience Inc., to provide a more reliable estimate and allow sensitivity analyses to be undertaken.

Both methods, and associated results are discussed below.

6.4.1 CLiq Assessment

Our CLiq assessment adopted the 'Level ground with a free face' approach, because the alternative option (gently sloping ground) was found to estimate lateral displacements in excess of 600mm under the ILS design case.

Our assessment was based on the sites closest proximity to the Taruheru River (117m) and a free face height of 7m (elevation relief from the site to the river) and was completed for each CPT.

Table 3 presents the results of these analyses.

Table 3 - Summary of Lateral Spreading Displacements

CPT ID	SLS 1/25 year (mm)	ILS 1/100 year (mm)	ULS 1/500 year (mm)	Global Lateral Movement (ULS)	
CPT01	<5	~105	~315	Major	
CPT02	<5	~170	~390	Major	
СРТ03	<5	~100	~275	Minor to Moderate	
CPT04	<5	~250	~460	Major	
CPT05	<5	~180	~380	Major	
Global lateral movement categories	Minor to Moderate 0 to 300mm	Major 300 to 500mm		Severe >500mm	

Notes:

- Free-face method adopted limits of lateral spreading to 2H. Chu et al (2006) have compared predicted values
 of lateral spread using the Zhang et al model with actual measurements of lateral displacement following the
 1999 Chi Chi earthquake. They found that predicted values better matched observed values when
 liquefaction calculations in the CPT profile were limited to a depth of twice the free face height (2H).
- Global lateral movement categories based on MBIE Guidance for TC3 (Ministry of Business Innovation and Employment Hīkina Whakatutuki, 2015)

6.4.2 Numerical Modelling Assessment

Numerical modelling was used to assess the potential for lateral displacements using Slide 2 as discussed above.

Our modelling assessed non-circular slip surfaces using the 'Cuckoo" search method and adopting the 'Vertical Strength Ratio' material strength model for the liquefied layer.

From past projects and general geological knowledge of this area, it is our experience that the Holocene beach sand transitions to clay-rich deposits towards the river, likely due to a combination of river migration and overbank deposition. In many areas along the Taruheru river a relic river terrace can be clearly identified, however this area had been developed prior to the earliest available historic aerial imagery and consequently the terrace boundary could not be identified.

Accordingly, we have adopted a conservative 'what if.' scenario in our modelling where the liquefied layer has been extended at consistent thickness and elevation to the river.

Figure 5 shows the base model, the surface profile of which was plotted from recent LiDAR data. Note the left side of the model has been manually extended to check the potential for more critical slip surfaces.

Figure 5: Base model for numerical lateral displacement analysis

The liquefied shear strength to overburden stress (Tau/ Sigma) ratio was derived for the sand/ silt mixtures from statistical analysis of CPT data. The Tau/ Sigma Ratio was found to vary significantly, ranging from 0.08 to 0.98; a value of 0.2 was adopted to provide a moderately conservative estimate for the body of liquefied material. Figure 6 shows a plot of Tau/ Sigma ratio with depth for CPT04.

Figure 7: Tau/ Sigma ratio plot for CPT04 and plot showing depth of liquefiable material. Blue line shows value adopted in our modelling.

Two design cases were assessed:

1. Static Flow

This design case models a post seismic liquefied case to assess the potential for flow failures to impact the subject property.

2. Seismic Yield

This assessment determines the PGA required for the site to be affected by lateral displacements considering seismic action coincident with the fully liquefied condition. A magnitude of 0.1g was considered reasonable to represent an aftershock occurring within the short-term, liquefied timeframe.

6.4.2.1 Results

The results suggest that the property will not be affected in the static flow scenario with failures extending to a maximum of around 31m from the riverbank, some 85m from the subject property.

Under the seismic yield design case the subject property is estimated to be affected with a PGA of around 0.11g. Accordingly, lateral displacements are not anticipated in this scenario.

Full results are presented in Appendix E.

6.4.3 Conclusions

Numerical modelling indicates that lateral displacements of the magnitude estimated by CLiq are only achieved when full seismic PGAs are applied in the fully liquefied condition. Such a scenario is considered to be of very low probability, and highly conservative. We consider however that there is a reasonable probability of an aftershock occurring during this timeframe.

We conclude that the numerical modelling provides a more realistic estimate of ground performance, particularly given the apparent overestimation of liquefaction affects, discussed in Section 6.3.3. Accordingly, we consider that the subject site has low lateral spreading potential.

6.4.3.1 Lateral Stretch

Lateral stretch is a metric of the amount of differential extension that a portion of land may experience during an episode of lateral spreading. The lateral stretch across a foundation is a main factor in foundation damage due to liquefaction and lateral spreading as a result of a large earthquake.

Given the results of our numerical analyses, discussed above, lateral stretch is not anticipated at the subject site under the design cases assessed.

6.5 Liquefied Bearing

Liquefaction may lead to foundation bearing failure, by either 'punch through' failure or a reduction in bearing capacity when liquefaction occurs within the zone of influence of load bearing foundations.

A preferred foundation option has not been identified for the proposed structures at the time of writing and we have completed liquefied bearing assessments for both raft-type surface structures and piled foundations.

A unit weight of 17kN/m³ was adopted for both the non-liquefied and liquefied soil layers. An angle of internal friction of 34 degree was adopted for the non-liquefied material.

The Tau/sigma ratio for these assessments was based on site-specific CPT data and taken as 0.075 for the liquefied material within the zone of influence of the foundations.

A low-bound groundwater level was taken as 1.65m, as discussed in Section 5.2.

A reduction factor of 0.75 was applied to the ultimate capacities calculated for the proposed, two-storey, duplex buildings, in accordance with MBIE Module 5 (2021) for moderately loaded structures.

6.5.1 Pile Foundation Assessment

Our assessment of pile foundations assumed:

- Ordinary piles embedded to a minimum depth of 0.5m at 0.3m diameter (including concrete cover),
 and
- Anchor piles embedded to a minimum depth of 0.9m at 0.4m diameter (including concrete cover), and
- 100kPa design load.

Both projected area and 'punch-through' failure mechanisms were assessed.

6.5.1.1 Results

The design load was found to be acceptable in both design cases. Note that our calculations are dependent on the assumptions listed within this Section. Should the pile diameter, pile embedment depth or design loads change, the liquefied bearing capacities will need to be reassessed.

6.5.2 Raft type Surface Structure Foundation Assessment

For the raft-type surface structures assessments were completed for the single-storey and two-storey buildings assuming:

- Foundation widths as presented in the 15% architectural drawings, and
- An embedment depth of 0.2m.

6.5.2.1 Results

Liquefied bearing capacities were calculated to be 19kPa for the proposed single-story buildings and 14kPa for the proposed two-storey duplex structures.

The values presented above are dependent on the assumptions listed. Should the foundation breadth, embedment depth or design loads change, the liquefied bearing capacities will need to be reassessed.

6.6 Equivalent MBIE Technical Category

Considering the rationalisation provided in Section 6.3.3, we consider that seismic ground performance at this site would be equivalent to a TC2 classification in accordance with Table 15.6 of the MBIE Guidance (2015).

6.7 Flood Hazard

The site is not located in a mapped flood hazard zone. GDC aerial imagery post cyclone Gabrielle does not indicate this site experienced significant impacts.

6.8 Tsunami

The Gisborne / East Cape coastline is classified as being at the highest risk in the country of being affected by tsunami. Modelling for the Gisborne region (GNS Science Te Pū Ao, 2016) indicates that the site is sufficiently

elevated and is unlikely to be inundated in 1:100, 1:500, and 1:2500-year return period tsunami events, respectively. Civil defence tsunami inundation maps show that the site mapped as a yellow zone, which may be subject to tsunami hazard in the case of a severe (ie M8.9) local earthquake on the Hikurangi subduction margin (Gisborne District Council Te Kaunihera o Te Tairāwhiti, 2019).

6.9 Expansive Soils

Cohesive soils containing significant proportions of certain clay minerals can be subject to appreciable volume change caused by variations in soil moisture content, most notably between seasons or from the uptake of water through the root systems of trees and shrubs. This is referred to as soil reactivity or shrink-swell behaviour.

The surficial soils at this site are granular in nature and therefore not subject to expansivity.

6.10 Consolidation Settlement

The topsoil across the site is expected to be subject to consolidation with applied load and is not suitable to support structural loads.

The firm clay beneath the site may also be subject to consolidation settlement depending on the foundation option selected and the structural loads applied. The potential for consolidation settlement within this material should be assessed once the foundation type and structural loads have been determined.

6.11 Natural Hazards Summary

From our assessment of the natural hazards and ground deformation risks presented to the proposed development we consider that the proposed structures can be safely located on the site, provided that the recommendations given in Section 7 are adopted.

7 ENGINEERING RECOMMENDATIONS

7.1 Site Contouring and Topsoiling

The finished ground level should be graded so that water cannot pond against, beneath or around the buildings for the economic life of structure. To achieve this, it will be important that the building platform beneath the topsoil grades away from the site. Contouring should avoid the potential for concentration and discharge of surface water over point locations which could result in soil erosion or instability.

7.2 Access Road Construction

Access is proposed from Aberdeen Road. No major/ significant earthworks are anticipated to form access to the proposed dwellings.

7.3 Foundation Recommendations

No lot specific geotechnical investigations were undertaken for this lot due to the presence of the existing driveway, trees, and vegetation. Ground conditions were found to be relatively comparable across the site. Any aberrations encountered for this lot will be addressed during construction.

7.3.1 Foundation Type

Based on the general site investigation and analysis, we consider that foundations comprising pile foundations or raft-type surface structures are suitable for the site conditions providing the recommendations and limitations presented within this section are addressed in design.

7.3.2 Design Considerations

Based on the scope of work completed, the following aspects need to be considered in detailed design:

- Site Class Class D Deep or soft soil
- Liquefaction-induced vertical settlements TC2 equivalent
- Relatively high groundwater level
- Liquefied bearing capacity
- Potential for consolidation settlement

7.3.3 Bearing Capacity and Founding Depth

Foundations must extend beneath any topsoil, uncontrolled fill, organic and/ or otherwise unsuitable material.

The found ground conditions to be relatively comparable across the site and by taking available nearby geotechnical investigations data into consideration, we assume for the Lot 11/12 duplex structure, a static geotechnical ultimate bearing capacity of 210kPa will be available from 0.6m depth. A reduction factor of 0.45 should be applied to this value to give the design bearing strength (qdbs).

A short-term, post-seismic (static), liquefied bearing capacity, equivalent to the values presented in Section 6.5, should be assessed in structural design. Note that these liquefied bearing capacities are contingent on the assumptions listed within Section 6.5. Should these assumptions change in design, the liquefied bearing capacities will need to be reassessed. This may require some iterative design between the geotechnical and structural engineers.

7.4 Surface Water

Surface water from roof, impermeable surfaces, or any slopes should be collected and discharged away from the building to mitigate against flooding, erosion, soil expansivity, and/ or potential instability. The site will be connected to the reticulated network. Rainwater will be collected from the roof and all paved surfaces including parking areas and discharged into the GDC reticulated stormwater network.

7.4.1 Service Pipes

All service pipes, stormwater structures should be designed and constructed to ensure adequate capacity, strength, and water tightness to prevent leakage into the platform through blockage, running under pressure, or structural failure.

All service pipes installed within any fill should be flexible, or flexibly joined, so that they may deflect without breaking if the ground settles.

A record should be kept of the position, type, and size of all subsoil drains, and in particular of their outlets.

7.5 Trees and Shrubs

There are trees within the vicinity scattered across the property which might potentially cause damage through heaving as a result of root growth and/or settlement resulting from soil shrinkage from the moisture uptake of the roots. To reduce the chance of damage to the foundations, we recommend one of the following options:

- . Any Trees/ plants that at their mature high will not be a minimum of that height away from the foundation should be removed including its major root structure.
- A root barrier should be designed and installed between the offending plant and the structure.
- Foundation should be taken to a depth no less than 1.0m where damage from the roots of a plant is unlikely.

If new trees, shrubs, or gardens are established near the structure, care should be taken to ensure:

- The vegetation does not interfere with any subfloor ventilation or services to the structure.
- Over-watering of the vegetation does not saturate the ground near the foundations.
- Trees or shrubs with the potential to develop significant root systems should be planted a minimum distance equal to the mature height of the plant away from the foundations.

SUSTAINABILITY

Considering sustainability as early as possible in a project's development, could lead to significant project opportunities and wider positive outcomes. Geotechnical opportunities for increased sustainability for this project include:

- Striping and stocking topsoil for reuse (dependant on presence/ levels of contaminants).
- Designing for cut and fill balance where possible.
- Reuse of site won materials, or using materials won from other sites including use of recycled crushed concrete aggregate for hard fill.
- Contributing site investigation data to the New Zealand Geotechnical Database (NZGD) to help reduce the site investigations needed in the future.
- Using local consultants and contractors to reduce transport related emissions.

9 CONCLUSIONS

Following development of the site in accordance with our recommendations, we consider that: -

- a) The land in respect of which a consent is sought, or any structure on the land built in accordance with our recommendations, is unlikely to be subject to material damage by erosion, falling debris, subsidence, slippage, or inundation from any source; and
- b) Any subsequent use that is likely to be made of the land is unlikely to accelerate, worsen, or result in material damage to the land, other land, or structure by erosion, falling debris, subsidence, slippage, or inundation from any source; and
- c) Sufficient provision has been made for physical access to each allotment to be created by the subdivision.

10 PLAN REVIEW

Prior to an application for Building Consent, it is important we are given the opportunity to review the final development drawings to ensure the recommendations contained within this report have been followed and interpreted correctly. Following successful review of the development drawings, we are able to update this report to support an application for Building Consent.

11 VERIFICATION

Verification requirements will be provided once the form of the foundations has been determined.

12 LIMITATIONS

This report should be read and reproduced in its entirety including the limitations to understand the context of the opinions and recommendations given.

This report has been prepared exclusively for NZHG Gisborne Limited in accordance with the brief given to us or the agreed scope and they will be deemed the exclusive owner on full and final payment of the invoice. Information, opinions, and recommendations contained within this report can only be used for the purposes with which it was intended. LDE accepts no liability or responsibility whatsoever for any use or reliance on the report by any party other than the owner or parties working for or on behalf of the owner, such as local authorities, and for purposes beyond those for which it was intended.

This report was prepared in general accordance with current standards, codes and best practice at the time of this report. These may be subject to change.

Opinions given in this report are based on visual methods and subsurface investigations at discrete locations designed to the constraints of the project scope to provide the best assessment of the environment. It must be appreciated that the nature and continuity of the subsurface materials between these locations are inferred and that actual conditions could vary from that described herein. We should be contacted immediately if the conditions are found to differ from those described in this report.

13 REFERENCES

- Ambraseys, N., & Srbulov, M. (1995). Earthquake induced displacements of slopes. *Soil Dynamics and Earthquake Engineering*, 14(1), 59-71.
- Boulanger, R., & Idriss, I. (2014). CPT and SPT based liquefaction triggering proceedures. Report No. UCD/CGM-14, 1.
- Bray, J. D., & Travasarou, T. (2007). Simplified procedure for estimating earthquake-induced deviatoric slope displacement. *Journal of geotechnical and geoenvironmental engineering*, 133(4), 381-392.
- Cetin, K., Bilge, H. T., Wu, J., Kammerer, A. M., & Seed, R. B. (2009). Probabilistic model for assessment of cyclically induced reconsolidation (volumetric) strains. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 387-398.
- Chu, D. B., Stewart, J. P., Youd, T. L., & Chu, B. L. (2006). Liquefaction-Induced Lateral Spreading in Near-Fault Regions during 1999 Chi-Chi, Taiwan Earthquake. *Journal of Geotechnical & Geoenvironmental Engineering*, 1549-1565.
- Gisborne District Council. (2023). Tairāwhiti Maps. Retrieved 2022, from https://maps.gdc.govt.nz/H5V2_12/
- Gisborne District Council Te Kaunihera o Te Tairāwhiti. (2019). Tsunami inundation and evacuation maps.
- Gisborne District Council Te Kaunihera o Te Tairāwhiti. (2021). Minimum Requirements for Geotechnical Reports.
- Gisborne District Council Te Kaunihera o Te Tairāwhiti. (2022). Bearing Capacity and Geotechnical Investigation Requirements for Buildings.
- GNS Science. (2020). New Zealand Active Faults Database.
- GNS Science Te Pū Ao. (2016). Probabilitistic Mapping of Tsunami Hazard and Risk for Gisborne City and Wainui Beach. Wellington: GNS.

- Jibson, R. W. (2007). Regression models for estimating coseismic landslide displacement. Engineering geology, 91(2-4), 209-218.
- Mazengarb & Speden. (2000). Geology of the Raukumara area. Institute of Geological and Nuclear Sciences 1:250,000 geological map 6.
- Ministry of Business Innovation and Employment Hikina Whakatutuki. (2015). Repairing and rebuilding houses affected by the Canterbury earthquakes - Part C Technical Guidance. Wellington.
- New Zealand Geotechnical Society (NZGS) & Ministry of Business Innovation and Employment (MBIE). (2021, November). Earthquake Geotechnical Engineering Practice Module 1. Overview of the Guidelines, Rev 1. Wellington.
- New Zealand Geotechnical Society (NZGS) & Ministry of Business, Innovation and Employment (MBIE). (2021, November). Earthquake Geotechnical Engineering Practice Module 3. Identification, assessment and mitigation of liquefaction hazards Rev1. Wellington.
- Retrolens.co.nz. (n.d.). Retrieved from retrolens.co.nz.
- Robertson, P. K., & Cabal, K. L. (2014). Guide to Cone Penetration Testing for Geotechnical Engineering. 6th Edition. Gregg Drilling & Testing Inc.
- Standards New Zealand Te Mana Tautikanga O Aotearoa. (2004). NZS1170.5 Structural Design Actions: Part 5: Earthquake Actions- New Zealand. Wellington: Standards New Zealand.
- Tonkin & Taylor. (2015). Liquefaction vulnerability and Geotechnical Assessment Guidance for Gisborne District Council.
- Zhang, G., Robertson, P., & Brachman, R. (2002). Estimating liquefaction-induced groundsettlements from CPT for level ground. Canadian Geotechnical Journal, 39(5), 1168-1180.
- Zhang, G., Robertson, P., & Brachman, R. (2004). Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871.

14 GLOSSARY

Compressible

Soils:

Compressible soils are those that will undergo a reduction in volume under an imposed load, such as the weight of fill or a structure. This occurs firstly as a result of the expulsion of air and water from the soil void spaces (primary settlement) and secondly due to a restructuring of the soil skeleton to take the load (secondary settlement).

Cyclic Softening:

Cyclic-softening is a related condition to liquefaction can also affect clay soils when subjected to cyclic-loading. Clay soils may significantly soften and led to bearing capacity failure, in addition to post-earthquake consolidation settlements may occur as a result of the earthquake shaking.

Expansive Soils:

Cohesive soils containing significant proportions of certain clay minerals can be subject to appreciable volume change caused by variations in soil moisture content, most notably between seasons or from the uptake of water through the root systems of trees and shrubs. This is also often referred to as soil reactivity or shrink-swell behaviour.

Lateral Spread:

Lateral spread of liquefied soils is the lateral displacement of blocks of land moving laterally towards a free edge (for example a riverbank) or within sloping ground. More lateral movement tends to occur closest to the edge with less movement further back. Lateral spreading may result in large permanent ground displacements including cracks, fissures, vertical officesets and overall settlement of the ground.

Lateral Stretch:

Lateral stretch is the amount of differential extension that a portion of land may experience during an episode of lateral spreading. The lateral stretch across a foundation is a main factor in foundation damage due to liquefaction and lateral spreading because of a large earthquake.

LiDAR

Light Detection and Ranging (LiDAR) is a method of remote sensing topographical survey.

Limit States:

Seismic design criteria for performance-based design. SLS, SLS2 & ULS are prescribed in NZS1170.5 (Standards New Zealand Te Mana Tautikanga O Aotearoa, 2004)

- Serviceability Limit State (SLS): Functional requirements for the serviceability limit state are assumed to be met if the structure or part can continue to be used as originally intended without the need for repair (SLS1) or can remain operational or continue to be occupied as appropriate (SLS2). SLS earthquakes are considered highly likely to occur during the lifetime of the structure.
- Ultimate Limit State (ULS): Functional requirements for the ultimate limit state are assumed to be met if:
 - a) People within, and adjacent to the structure are not endangered by the structure

or part.

- Displacements of the structure are such that there is no contact between any parts of a structure for which contact is not intended, or between separate structures on the same site, if such contact would damage the structures or parts to the extent that persons would be endangered, or detrimentally alter the response of the structure(s) or parts, or reduce the strength of structural elements below the required strength.
- c) The structure does not deflect beyond a site boundary adjacent to which other structures can be built or collision between the structure and any adjacent existing structures cannot occur.
- d) There is no loss of structural integrity in either the structure or part.
- Intermediate Limit State (ILS): ILS is an intermediate seismic event between SLS & ULS although is not a code requirement. The behaviour of soils and geotechnical systems under earthquake shaking may be highly non-linear and even exhibit a pronounced 'step change' in performance with increasing intensity of shaking. For such cases, only considering performance at the SLS and ULS levels of shaking would fail to identify potentially poor and unacceptable performance at intermediate return periods of shaking.

Liquefaction:

Liquefaction is the term used to describe the temporary, but substantial, loss of strength and stiffness which can occur in saturated, unconsolidated soils that are subjected to strong shaking. In addition to near-total strength loss, liquefaction may also result in the expulsion of sediment and water at the surface, ground and structure settlement, and in lateral (spreading) displacement of the ground.

LPI

Liquefaction potential index is a liquefaction damage index. LPI ranges between 0 and 100 and sites with an LPI of 5 indicate a high liquefaction risk and sites with LPI greater than 15 indicate very high risk (Iwasaki et al, 1982). Not to be used as a precise measure of liquefaction-induced ground damage but as an indicator of the general level of liquefaction severity.

LSN

Liquefaction Severity Number is a liquefaction damage index. LSN varies from 0 (representing no liquefaction vulnerability) to more than 100 (representing very high liquefaction vulnerability (van Ballegooy et al, 2013). LSN places greater importance (than LPI) on the thickness of the non-liquefied crust when the groundwater table is close to the ground surface. Not to be used as a precise measure of liquefaction-induced ground damage but as an indicator of the general level of liquefaction severity. LNS was developed based on the observations/ investigations from the Canterbury earthquake sequence

PGA:

Peak Ground Acceleration (PGA) is the maximum ground acceleration during an earthquake as a proportion of gravity.

Punch Through

Punch through failure occurs when a foundation punches through a crust of non-liquefiable material due to underlying liquefaction occurring and can lead to potential damage to

Failure:

foundations and/ or large settlements.

Technical Category:

Following the 2010 -2011 Canterbury earthquake sequence the Ministry of Business Innovation and Employment (MBIE) assigned three technical categories (TC1, TC2, TC3) across the residential 'green zone' for foundation investigation and design guidance focusing on one and two storey timber-framed dwellings. These categories are broadly defined as below:

- TC1: Liquefaction damage is unlikely in future large earthquakes. Standard residential foundation assessment and construction is appropriate.
- TC2: Liquefaction damage is possible in future large earthquakes. Standard enhanced foundation repair and rebuild options in accordance with MBIE guidance are suitable to mitigate against this possibility.
- TC3: Liquefaction damage is possible in future large earthquakes. Individual engineering assessment is required to select the appropriate foundation repair or rebuild option.
- TC2/ TC3 Hybrid: A site that straddles liquefaction settlement limits of TC2 and TC3 where the SLS settlements are assessed as being less than 50 mm but the ULS settlements are assessed at greater than 100mm.

Whilst this guidance is intended for residential buildings in the Canterbury region, they have been widely adopted to convey liquefaction vulnerability across New Zealand.

The Modules:

The New Zealand Geotechnical Society (NZGS) and MBIE jointly published a series of guidelines for Earthquake Geotechnical Engineering Practice. Revision 1 of the Modules was published in November 2021 and they provide guidance under section 175 of the Building Act 2004 to assist parties to comply with their obligations under the Building Act 2004. The following modules currently form the collection:

- Module 1: Overview of the guidelines
- Module 2: Geotechnical investigation for earthquake engineering
- Module 3: Identification, assessment, and mitigation of liquefaction hazards
- Module 4: Earthquake resistant foundation design
- Module 5: Ground improvement
- Module 5A: Specification of ground improvement for residential properties in the Canterbury region
- Module 6: Retaining walls

APPENDIX A SITE PLAN

APPENDIX B HAND AUGER TEST LOGS

Investigation erdeen Rd, Gisborne	Coordinates: System: Elevation: Located By:	NZTM 6.5m	(NZVD2016 lan/map	one penetro		vs / 50mm) 8	y: SS By: SS
D, with trace rootlets and silt; dark brown. Very loo , fine to medium.	ose; moist;	Water	Vane un	drained she	ometer (blov 6 ear strength,	vs / 50mm) 8 s _u (kPa)	Vane ID: N/A peak / residual
D, with trace rootlets and silt; dark brown. Very loo , fine to medium.	ose; moist;						
D; brown. Loose; moist; sand, fine to medium.							
				i			70 80
		,		And a second			
		Groundwater not encountered		in the state of th			
n: Light grey.							
i. Light grey.		,		DECEMBER OF THE PROPERTY OF TH			_
n: Grey with orange mottles. n: Wet.				- Control of the Cont			
				The state of the s			-
			T () and () and ()		PAULO CONTRACTOR		Standing water lev
	Termination: TARGET DEPTH	Termination: TARGET DEPTH		Termination: TARGET DEPTH	Termination: TARGET DEPTH	Termination: TARGET DEPTH ● Vane peak ○ Vane reside ▼ Vane UTP	Termination: TARGET DEPTH ● Vane peak ✓ Vane residual

(LAND	DEVEL!	Hand Aug	ger Borel		e Log		Pro	st ID: oject ID: eet:	HA02 24477 1 of 1	
Client Proje Locat Test :	ct: tion:	556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTI 6.5m			Lo Pre	st Date: gged By: epared By ecked By:		23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dynamic cor 2 Vane undr	e penetrom	strength, s _u (50mm) 8	Values Vane ID: N/A peak / residual (sensitivity)	
- 0.5	TS		SAND, with minor silt, with trace rootlets; dark b moist; sand, fine to medium.								
1.0_			SAND; brown. Loose; moist; sand, fine to mediu	ım.	incountered						
1.5_	Holocene Beach Deposits		1.50m: Grey with orange mottles. 1.70m: Light grey.		Groundwater not encountered						
2.0 _			2.40m: Wet.								
2.5											
Rema	arks:	1: 2.50r	Termination: TARGET DEPTH ibed in general accordance with NZGS 'Field Des	erintion of Sail and D	noki /20	05)	O Va	ne peak ne residual ne UTP	<- Gr	anding water levoundwater inflo	V

(LAND	DEVEL a ENGIN	Hand Aug	er Borel		e L	.00	ļ		F	rest II Projec Sheet:	t ID:	HA03 24477 1 of 1	
Clien Proje Local Test :	ct: tion:	556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne io geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTN 7m (N		2016)	6129	mE	L	repa	ate: d By: red By: ed By:		23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dy	namic c	4	netromete	situ To er (blow: 6	esting s / 50mr 8	n)	Values Vane ID: N/A peak / residual (sensitivity)	1300
- 0.5_	Uncontrolled Fill / Topsoil		SAND, with minor silt, with trace rootlets; dark brown moist; sand, fine to medium; trace metal fragments										<i>Teorismus</i>)	
.1.0_			SAND; brown. Loose; moist; sand, fine to medium.				>							
1.5_	Holocene Beach Deposits		1.80m: Grey with orange mottles.											
2.0_			1.90m: Wet.											
2.5			2.40m: Saturated.					The state of the s						
	Depti arks:	n: 2.50r	m Termination: TARGET DEPTH						Vane		al al		nding water le	
Mater No co	ials ar	re descri	ibed in general accordance with NZGS 'Field Descrip plied between shear vane and DCP values.	otion of Soil and Ro	ick' (20	05).		-	Vane			nii Nei oro	oundwater inflo oundwater outfl enetrate	

	LANID	DEVEL	Hand Aug			e Lo	og			Test ID: Project ID		
Client Proje Locat	ct: tion:	NZHG Geotec 556-56	chnical Investigation O Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTI 7m (I		16)	26mE		Sheet: Test Date Logged B Prepared Checked	y: SS By: SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dyna	mic cone 2		eter (blov	esting vs / 50mm) 8	Values Vane ID: N/A peak / residual (sensitivity)	
-	TS		SAND, with minor silt, with trace rootlets; dark be moist; sand, fine to medium.	rown. Loose;							(vortability)	
-			SAND; brown. Loose; moist; sand, fine to mediu	m.								
1.0_	iits											
.5_	Holocene Beach Deposits											
2.0 _			1.90m: Wet.					And the state of t				
- 2.5			2.20m: Saturated.		•		\ <	>				
lais '	Der#	N 0 50-	Tormination: TARCET DESTU			-			1000			500
	Depti irks:	1: 2.50r	n Termination: TARGET DEPTH					● Var	ne peak ne residu		Standing water le	

(LANE	DEVEL a ENGIN	Hand Augo	er Borel		e l	L	og				Test Proj She	ect ID:	HA05 24477 1 of 1	
Clien Proje Loca Test	ct:	556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne to geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZT 7m (Site	M NZVI	D20	16)	6121	ImE		Log Prep	Date: ged By: pared By: cked By:		23
Depth (m)	Geology	Graphic Log			Water		Dyna	mic co	4	In- netrome	6	Testi ws / 50	ng (mm)	Values Vane ID: N/A peak / residual	
	Uncontrolled Fill / Topsoil Ge	Grand Control	Material Description SAND, with minor silt, with trace rootlets and grave Loose; moist; sand, fine to medium; gravel, fine to subrounded to subangular.	l; dark brown. nedium,	Ň		E		10		150	20	0	(sensitivity)	
0.5_	nn		SAND; brown. Loose; moist; sand, fine to medium.	3											
1.0_															
1.5_	Holocene Beach Deposits														
2.0_			1.80m: Brownish grey. 1.90m: Wet.												
. 2.5			2.40m: Saturated.		.▼						1				
	Depti	h: 2.50i	m Termination: TARGET DEPTH					The second secon			e peak			anding water le	
Mater	ials a	re descr ion is im	ibed in general accordance with NZGS 'Field Descrip plied between shear vane and DCP values.	tion of Soil and Ro	ick' (20	05).			-	No. 0 1 140/5	e resid e UTP U		10 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	oundwater inflo oundwater outfl enetrate	

(LAND		Hand Auge Method: 5	0mm Hand Aug	ег					- 1	Proj She		HA06 24477 1 of 1	
Clien Proje Local Test :	ct: tion:	556-56	chnical Investigation io Abeerdeen Rd, Gisborne io geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTI 6.2m		D201		7mE		Log Pre	t Date: ged By: pared By: cked By:		!3
Depth (m)	Geology	Graphic Log	Material Description		Water	Dy	namic 2	ndraine	enetrome 4 ed shear s	6	ws / 50	Omm) Pa)	Values Vane ID: N/A peak / residual (sensitivity)	
-	Uncontrolled Fill / Topsoil		SAND, with minor silt, with trace rootlets and gravel; of Very loose; moist; sand, fine to medium; gravel, fine,	dark brown. subangular.		ļ								
0.5_	ו		SAND; brownish orange. Loose; moist; sand, fine to r	nedium.										
1.0_	Holocene Beach Deposits					Strong minister minis	* * *							
1.5_	Holocer		1.60m: Wet.				\(\)	X						
2.0_			1.80m: Heavy orange mottling. 1.90m: Brownish grey. Saturated. 2.00m: Brownish grey with orange mottles. Poor recovery > 1	50%.	•									
2.5_														
-		á												
Hole Rema		1: 2.20	Termination: HOLE COLLAPSE					\dashv	Van	e peak	:	▼ Sta	inding water lev	el
Mater	ials ar	e descr	ibed in general accordance with NZGS 'Field Descriptio plied between shear vane and DCP values.	n of Soil and Ro	ck' (20	05).			200-213-22	e resid e UTP ur		- A	oundwater inflov oundwater outflo	

	LAND	DEVEL.	Hand Aug	er Borel		e L	og				10000	t ID: ject ID: et:	HA07 24477 1 of 1	
Clien Proje Local	ct: tion:	556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTI 6m (l		016)	6090	mE		Test Log Prej	t Date: ged By: pared By: cked By:	12/09/202 SS SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dyn Va	amic co	4	netromete shear st	situ T er (blov 6	resti ws / 50	Omm)	Values Vane ID: N/A peak / residual (sensitivity)	
- 0.5_	Uncontrolled Fill / Topsoil		SILT, with minor sand, with trace rootlets; dark bromoist; non-plastic; sand, fine to medium; trace characteristics; sand, fine to medium.	own. Stiff; arcoal.										
1.0_			SAND; light brown with orange mottles. Loose; motto medium. 1.00m; Brownish grey with orange streaks.	oist; sand, fine										
1.5_	Holocene Beach Deposits		1.20m: Wet. 1.50m: Saturated.		▼									
2.0			1.70m: Poor recovery > 30%.							100000000000000000000000000000000000000				
2.5_														
		n: 2.00r	n Termination: HOLE COLLAPSE						Vane	peak		▼ Sta	inding water lev	vel
Rema Mater	ials ar	e descr	ibed in general accordance with NZGS 'Field Descri plied between shear vane and DCP values.	iption of Soil and Ro	ck' (20	05).		-	Vane	UTP		- A	oundwater inflo	

	LANE	DEVEL a ENGIN	OPMENT	uger Borel		e L	-00]			Test I Projed Sheet	ct ID:	HA08 24477 1 of 1	
Clien Proje Local Test :	ct: tion:	556-56	chnical Investigation 60 Abeerdeen Rd, Gisborne to geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTI 6.5m	М	/D201		mE		Prepa	Date: ed By: ed By: ked By:		23
Depth (m)	Geology	Graphic Log			ye.	D	ynamic o	4	netromete	situ T er (blow 6	esting s / 50m 8	g m)	Values Vane ID: N/A	
ē.	ğ	Gra	Material Description SAND, with minor silt, with trace rootlets; dar	de beneve Manufacca	Water		50	10		150	200		peak / residual (sensitivity)	
1- 1-	Topsoil		moist; sand, fine to medium.	K DIOWII. Very 1005e,						200	***************************************			
1	2 1		SAND; light brown. Loose; moist; sand, fine t	to medium.)								
0.5_						1	_							
4														
1.0														
-										1				
	ch Deposits													
1.5_	olocene Beach Deposits										***************************************			
9	Ī		1.60m: Brownish grey.				~							
-			1.80m: Brownish grey orange streaks.											
2.0_			2.00m: Dark brown. Wet.											
-			2.30m: Brownish grey.											
2.5	-		2.40m: Saturated.		•									
]														
22 (-														
201-7017		n: 2.50	m Termination: TARGET DEPTH) Vane	peak		▼ Sta	nding water lev	vel
tema	arks:							() Vane	e residu	al	← Gro	oundwater inflo	PW

	AND	DEVELO S ENGIN	Hand Aug	ger Borel		e Lo	g		Test ID: Project ID: Sheet:	HA09 24477 1 of 1	
Client: Projec Locati Fest S	t: ion:	556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTM 6.5m		2016)	94mE	Test Date: Logged By: Prepared B Checked By	y: SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dynar 2	nic cone p ? e undraine		u Testing	Values Vane ID: N/A peak / residual (sensitivity)	55/55
0.5_	Topsoil		SILT, with minor sand, with trace rootlets; dark to moist; non-plastic; sand, fine. \(0.20m: SAND, with minor silt. Sand, fine to medium; tr	50							
1.0_			SAND; brownish orange. Loose; moist; sand, fir	ne to medium.							
1.5_	Holocene Beach Deposits		1.50m: Brownish grey.								
2.0_			2.00m: Wet.								
2.5	17		2.40m: Saturated.		•						
lole D		n: 2.50r	m Termination: TARGET DEPTH			Transference and the second se	100 100 100 100 100 100 100 100 100 100	● Vane pe		Standing water lev	

(LAND	DEVEL a ENGIN	OPMENT	uger Borel		e Loç	3		Test ID: Project ID: Sheet:	HA10 24477 1 of 1	
Clien Proje Local	ct: tion:	556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne io geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTM 6.5m			nE	Test Date: Logged By: Prepared By Checked By	12/09/202 SS : SS	23
Depth (m)	Geology	Graphic Log	Material Description		Water	Dynamic 2	4	In-situ	resting ws / 50mm) 8	Values Vane ID: N/A peak / residual (sensitivity)	Service .
-	Ū		SILT, with minor sand, with trace rootlets; da moist; non-plastic; sand, fine.	rk brown. Stiff;		100000000000000000000000000000000000000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Schouvity)	-
-	soil		0.20m: SAND. Sand, fine to medium.								
0.5_	Topsoil										
			SAND; brownish orange. Loose; moist; sand	fine to medium.							
-			3	,							
1.0_											
3 -						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1.5_	ch Deposits										
-	Holocene Bead		1.70m: Brownish grey.				*				
2.0_											
1			2.00m: Wet.			<u> </u>					
-			22 40m; Dork brown Saturated		T						
2.5_			2.40m: Dark brown. Saturated.				\				
-											
lole	Denti	n: 2.50i	m Termination: TARGET DEPTH		16			Von		anding weeks to	_
Rema		2.001	Permission 1/31/Obj Did III				0			anding water lev	

		OPMENT	uger Boreh	er			Test ID: Project ID: Sheet:	HA11 24477 1 of 1	
Client: Project: Location Test Site	: 556-56	chnical Investigation i0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTN 7m (N	ngan amana dan kecamatan m a lambahan perjatuan dan basi Mala	06mE	Test Date: Logged By: Prepared By Checked By		3
Depth (m) Geology	Graphic Log	Material Description		Water	2	In-site penetrometer (b 4 6 ned shear streng 100 150	8	Values Vane ID: N/A peak / residual (sensitivity)	
Uncontrolled Fill / C	Dedo	SAND, with trace silt and gravel; dark brown. fine to medium; gravel, fine to medium, subrousubangular.	Loose; moist; sand, unded to	_				(sonsuvity)	-
0.5_		SAND; brownish orange. Medium dense; mois medium.	st; sand, fine to			al property of the control of the co			
-									
1.0_				ре					
h Deposits				Groundwater not encountered					
Holocene Beach Deposits				Groun					
-						and a construction of the			
2.0									
,		2.30m: Wet.							
2.5				1		distribution of the state of th			
-						and an incompanies of the contract of the cont			
Place of the second second	oth: 2.50	m Termination: TARGET DEPTH				Vane peVane res		anding water lever	

	LAND	DEVEL!	Hand Aug	ger Borek		e L	og			Pi	est ID: roject ID: heet:	HA12 24477 1 of 1	
		556-56	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	NZTN 6.8m		2016)		mE	Le	est Date: ogged By: repared By hecked By:		3
Depth (m)	Geology	Graphic Log	Material Description		Water	Dyna	amic cor	4	etrometer 6 shear stre	itu Tes (blows ength, s	sting / 50mm) 8	Values Vane ID: 2888 peak / residual (sensitivity)	
0.5	Topsoil		SILT, with minor sand, with trace rootlets; dark to moist; non-plastic; sand, fine. 0.30m: SAND, with minor silt. Sand, fine to medium. 0.40m: Black.			The state of the s						101 / 20 (5.1)	
			SAND; brownish orange. Very loose; moist; sand medium.	d, fine to		THE STATE OF THE S	*						
1.5_	Beach Deposits												
- 2.0 _	Holocene		2.00m: Wet.										
2.5 _			/2.50m: Saturated.		V								
-													
	Depth arks:	1: 2.50r	n Termination: TARGET DEPTH					•		peak residual		anding water leve	

	LANE	DEVEL S ENGIN	Hand Aug	er Boreh		e Log	g		Test Proje Shee	ect ID:	HA13 24477 1 of 1	
	ct: tion:	NZHG Geotec 556-56 Refer t	chnical Investigation O Abeerdeen Rd, Gisborne o geotechnical investigation plan	Coordinates: System: Elevation: Located By:	57098 NZTN 6.8m				Test Logg Prep Chec	Date: jed By: ared By: ked By:	12/09/202 SS : SS	
Depth (m)	Geology	Graphic Log	Material Description		Water	2	4	netrometer 6 shear stre	(blows / 500 8 ength, su (kP	nm)	Values Vane ID: 2888 peak / residual	al
_	в	9	SILT, with minor sand, with trace rootlets; dark bromoist; non-plastic; sand, fine.	own. Stiff;	s	50	10	, 10	200		(sensitivity)	_
-	Topsoil	18	↑0.30m: SAND, with minor silt. Sand, fine to medium.			0					116 / 28 (4.1)	COMMON AND AND AND AND AND AND AND AND AND AN
0.5_			SAND; brownish orange. Loose; moist; sand, fine	to medium.								
-						DOMESTIC OF THE PARTY OF THE PA						
1.0_						THE THE PERSON NAMED IN COLUMN 1						
-	Beach Deposits											
-	Holocene Beach											
12			1.90m: Brownish grey.				X					
2.0_			2.00m: Wet.			ALTERNATION CONTRACTOR						
:- :-			/2.50m: Saturated.									
2.5_	2		<i>V</i>		•							
15 15 15						W						
		n: 2.50r	m Termination: TARGET DEPTH	is .) Vane p	peak	▼ Sta	anding water lev	
08 3	irks:		ibed in general accordance with NZGS 'Field Descr	intion of Call I D-	-11 (20	a=\		Vane r		100 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	oundwater inflov	

	LAND	DEVEL S ENGIN	Hand Auge	er Borek		e l	_0	g			Pro	st ID: oject ID: eet:	HA14 24477 1 of 1	
	ct: tion:	556-56	chnical Investigation 60 Abeerdeen Rd, Gisborne to geotechnical investigation plan	Coordinates: System: Elevation: Located By:	5709 NZTI 6.8m Site	M (NZ)	/D20		03mE		Lo Pro	st Date: gged By: epared By: ecked By:		3
th (m)	1	Graphic Log			Water		ynam 2	12.30.32.00	penetro 4	meter 6	tu Tes (blows /	ting 50mm) 8	Values Vane ID: 2888	
Holocene Beach Deposits Topsoil Geology	Gra	Material Description SILT, with minor sand, with trace rootlets; dark brow				Vane 50		ned shea	ar strei		kPa)	peak / residual (sensitivity)	(E)	
0.5	Topsoil		moist; non-plastic; sand, fine. SAND; brownish orange. Very loose; moist; sand, fi medium.										57 / 26 (2.2)	
-			↑1.60m: Brownish grey.											
- 2.0 _			``1.90m: Wet.				*							
2.5			/2.50m: Saturated.		▼									
-														
	Depti arks:	n: 2.50	m Termination: TARGET DEPTH						• v	ane p	eak	▼ Sta	inding water lev	el
08 - 0	8 59	re descr	ibed in general accordance with NZGS 'Field Descrip'	tion of Soil and Ro	ck' (20	05).				ane re		/A	oundwater inflow	

	LAND	DEVEL S ENGIN	Hand Auge	er Boreh		e L	og			Pi	est ID: roject ID: neet:	HA15 24477 1 of 1	
Clien Proje Local	ct: tion:	556-56 Refer t	chnical Investigation 0 Abeerdeen Rd, Gisborne o geotechnical investigation plan		5709885mN, 203611 NZTM 6.8m (NZVD2016) Site plan/map				11mE		est Date: ogged By: repared By necked By	12/09/202 SS v: SS	23
Depth (m)	Geology	Graphic Log			ter		2	4	netromete	situ Te: er (blows / 6 rength, su	50mm) 8	Values Vane ID: 2888	
Dec	ğ	Gra	Material Description SILT, with minor sand, with trace rootlets; dark brow	vn. Stiff;	Water		50	10			200	peak / residual (sensitivity)	100
-	Topsoil		moist; non-plastic; sand, fine. 0.40m: SAND, with minor silt. Sand, fine to medium.			O projection on the contract of the contract o		•				86 / 20 (4.3)	
0.5_			SAND; brownish orange. Very loose; moist; sand, fi medium.	ne to									
1.0_							•						
-	osits												
1.5_	Holocene Beach Deposits												
2.0_			2.00m: Brownish grey. Wet.										
2.5			2.40m: Saturated.	,	▼			<					
-						***************************************	1						
		ı: 2.50r	m Termination: TARGET DEPTH					<u>_</u>	Vane	peak	▼ s	tanding water lev	_ v
08 - 0	rks:		ibed in general accordance with NZGS 'Field Descrip					(residual		roundwater inflo	W

APPENDIX C CONE PENETRATION TEST LOGS

APPENDIX D LIQUEFATION ANALYSIS RESULTS

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:07:30 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380559\L\L\24477-Specialist Software Models-Liquefaction- SLS-380559 (ID 380559).clq

CLiq v.3.5,2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:07:31 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380559\L\L\24477-Spedalist Software Models-Liquefaction- SLS-380559 (ID 380559).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:07:32 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CP9-8ACA-6EF80FEBB7A9\0\380000-380999\380559\L\L\24477-Specialist Software Models-Liquefaction- SLS-380559 (ID 380559).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:24 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380561\L\L\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5,2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\\380000-380999\380561\L\L\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

4

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\380000-380999\380561\\L\\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\\D2\152DC\18A-601D-4CF9-8ACA-6EF80FEB87A9\\0\0\380000-380999\380561\\L\\\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:25 pm Project file: M:\LDE - Project\\D2\\152DC\18A-601D-4CF9-8ACA-6EF80FEB87A9\\0\\380000-380999\380561\\L\\\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:40:28 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\380000-380999\380561\L\L\24477-Spedalist Software Models-Liquefaction - ILS-380561 (ID 380561).clq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:26:22 pm Project file: M:\LDE - Project\D2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\\\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:26:26 pm Project file: M:\LDE - Project\D2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\\\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:30 pm Project file: M:\LDE - Project\D2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:31 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\U.\24477-Spedailst Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:31 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\L\L\24477-Spedailst Software Models-Liquefaction - ULS-333265 (ID 333265).dq

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:32 pm Project file: M:\LDE - Project\\D2\152DC\18A-601D-4CF9-8ACA-6EF80FEBB7A9\\0\\333008-333999\\333265\\\L\\24477-Spedalist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

This software is licensed to: LDE Ltd CPT name: ULS- CPT03 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:32 pm Project file: M:\LDE - Project\\D2\152DC\18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\333000-333999\333265\\L\\\24477-Spedailst Software Models-Liquefaction - ULS-333265 (ID 333265).dq

6

This software is licensed to: LDE Ltd CPT name: ULS- CPT04 (CS)

This software is licensed to: LDE Ltd CPT name: ULS- CPT04 (CS)

CLiq v.3.5.2.22 - CPT Liquefaction Assessment Software - Report created on: 28/09/2023, 5:29:33 pm Project file: M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEB87A9\0\333000-333999\333265\L\L\24477-Specialist Software Models-Liquefaction - ULS-333265 (ID 333265).dq

This software is licensed to: LDE Ltd CPT name: ULS- CPT05 (CS)

This software is licensed to: LDE Ltd CPT name: ULS- CPT05 (CS)

10

APPENDIX E SLOPE STABILITY OUTPUTS

Appendix 5

Detailed Site Investigation

DETAILED SITE INVESTIGATION

556-560 ABERDEEN ROAD GISBORNE

PROJECT NO. EAM2410-01

PREPARED FOR TW GROUP

PREPARED BY KAREN TOULMIN SEPTEMBER 2023 Report prepared by:

Karen Toulmin (BSc)
Senior Environmental Scientist
EAM NZ Limited

Report reviewed by:

Jason Strong (MSc)
Principal Environmental Scientist
EAM NZ Limited

Qt-

© EAM NZ Limited

TABLE OF CONTENTS

TABLE	OF CONTENTS				
1	INTRODUCTION		1		
1.1	SUITABLY QUALIFIED ENVIRONMENTAL PRACTITIONERS				
1.2	SCOPE		2		
1.3	LIMITATIONS		2		
1.4	ASSUMPTION	VS	3		
2	SITE DETAILS		3		
2.1		PTION			
3	ENVIDONMENTAL	_SETTING	•		
3.1		Υ			
3.2					
3.3		OGY			
3.4		NTER			
		DRY			
4 4.1		ISTRICT COUNCIL PROPERTY SEARCH			
4.1 4.2		AERIAL PHOTOGRAPHS			
4.2 4.3		ACTIVITIES AND INDUSTRIES LIST			
4.4		ACTIVITES AND INDOSTRIES EIGT.			
5		TE MODEL			
5.1		LIAZADDOUGO CUDOTANOSO AND DOTENTAL CONTAMBANTO OF CONCEDIV			
	5.1.1	HAZARDOUS SUBSTANCES AND POTENTIAL CONTAMINANTS OF CONCERN			
	5.1.2	POTENTIALLY RELEVANT SENSITIVE HUMAN AND ECOLOGICAL RECEPTORS EXPOSURE PATHWAYS			
	5.1.3				
6		TION			
6.1		OF SAMPLE COLLECTION			
6.2		OGY			
	6.2.1	FIELD QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)			
7	ASSESSMENT CR	RITERIA	7		
7.1		AL ENVIRONMENTAL STANDARD FOR ASSESSING AND MANAGING CONTAMINAN			
		HUMAN HEALTH (NESCS)			
7.2		AL ENVIRONMENTAL PROTECTION MEASURE			
7.3		ID CONCENTRATIONS OF HEAVY METALS			
7.4	ECOLOGICAL	SOIL GUIDELINE VALUES	8		
8		SULTS			
8.1		ID SOIL CONCENTRATIONS			
8.2		ALLOIDS			
8.3		SOIL GUIDELINE VALUES			
8.4		SURANCE AND QUALITY CONTROL			
200	8.4.1	FIELD DUPLICATES			
8.5	RISK ASSESS	MENT	9		
9	CONCLUSIONS A	AND RECOMMENDATIONS	10		
10	REFERENCES		11		

DETAILED SITE INVESTIGATION: 556-560 ABERDEEN ROAD, GISBORNE

APPENDIX A-FIGURES	12
APPENDIX B- AERIAL PHOTOGRAPHY	17
APPENDIX C- SITE PHOTOGRAPHS	26
APPENDIX D- LABORATORY ANALYSIS AND REPORTS	31
APPENDIX E- REMEDIAL ACTION PLAN	36

1 INTRODUCTION

EAM NZ Limited (EAM) has been engaged by TW GROUP to undertake a Detailed Site Investigation (DSI), at 556-560 Aberdeen Road, Gisborne (hereon in referred to as the Site). It is our understanding that the site is proposed for residential re-development.

This DSI has been undertaken to provide a contamination assessment of the Site and to evaluate human health risks at the Site. A phased approach has been adopted for this investigation with an initial investigation, assembling background information to identify potential sources of contamination from past and present activities. This information is then used to develop a conceptual Site model and investigation strategy.

This report provides the following information:

- Background information.
- Site history.
- A conceptual Site model.
- Site visit and sampling
- Laboratory results.
- Conclusions and recommendations.

This investigation has been carried out in accordance with the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES).

1.1 SUITABLY QUALIFIED ENVIRONMENTAL PRACTITIONERS

EAM are Suitably Qualified and Experienced Practitioners (SQEP) in the field of contaminated sites. We offer 20+ years' experience in the contaminated site and environmental science fields. EAM routinely carry out contaminated land assessments in both the North and South Islands over many different Council jurisdictions.

Jason Strong (Principle Environmental Scientist - MSc Environmental Science1st Class)

Jason has undertaken literally hundreds of contaminated site assessments and remediation over the past 15 years. He has an MSc in Environmental Science where his thesis was based around trace metal contamination of soils/sediment.

Karen Toulmin (Senior Environmental Scientist – BSc Environmental Science)

Karen has 8 years' experience in contaminated land assessments and remediation, in both Australia and New Zealand.

PROJECT: EAM2410-REP-01 REPORT STATUS: FINAL PAGE: 1

1.2 SCOPE

The following scope of work was completed:

- Review of available information from Gisborne District Council, namely, the Listed Land Use Register (LLUR), historical aerial photographs, and available environmental reports.
- Review of the environmental setting of the site.
- Collection of surface soil samples across the site.
- Analysis of soil samples at an accredited laboratory for:
 - Heavy metals
- Preparation of a DSI report, including presentation and interpretation of results in accordance with the requirements of the NESCS and with the current 2021 edition of the MfE Contaminated Land Management Guidelines No. 1 and No. 5.

1.3 LIMITATIONS

This report: has been prepared by EAM for TW GROUP and may only be used and relied on by Gisborne District Council for the purpose agreed between EAM and TW GROUP as set out in section 1.1 of this report. EAM otherwise disclaims responsibility to any person other than TW GROUP arising in connection with this report. EAM also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by EAM in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. EAM has no responsibility or obligation to update this report to account for events or changes occurring after the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by EAM described in this report (refer section(s) 1.3 of this report). EAM disclaims liability arising from any of the assumptions being incorrect.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the site conditions, such as the location of buildings, services, and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. EAM does not accept responsibility arising from, or in connection with, any change to the site conditions. EAM is also not responsible for updating this report if the site conditions change.

EAM has prepared this report based on information provided TW GROUP and others who provided information to EAM (including Government authorities), which EAM has not independently verified or checked beyond the agreed scope of work. EAM does not accept liability

in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

Notwithstanding the Report Limitations, we confirm that Gisborne District Council can rely on this report for the purposes of determining compliance with the NES guidelines with respect to the development identified in this assessment.

1.4 ASSUMPTIONS

EAM has made the following assumptions during the preparation of this report:

- Information obtained from third parties and TW GROUP is complete and accurate.
- The observed and inferred conditions are representative of the actual conditions associated with HAIL sites and / or other sites not directly assessed.
- That the future land use of the site will remain residential.

2 SITE DETAILS

2.1 SITE DESCRIPTION

The Site is located at 99a Stanley Road, Gisborne. The legal descriptions are presented here.

Address	556-560 Aberdeen Road, Gisborne
aluation Number	0853055400, 0853055300
egal Descriptions	Lot 2 Pt 1 DP1585. Lot 1 DP1817
Land area	0.1659 ha, 0.1012 ha
Land Use	Residential

Figure 1 and 2 of Appendix A details the current site boundaries and the proposed development scheme plan.

3 ENVIRONMENTAL SETTING

3.1 TOPOGRAPHY

The site is in a residential zoned area. The topography of the site is low gradient flat land.

3.2 SOIL

Soils at the site are described by Manaaki Whenua¹ (2019) Brown Soils. Soils at the Site are described by Landcare Research (2020) as being Brown Soils. Brown soils are typically found in areas where and soils remain damp throughout the year. They are found in areas of high rainfall; hence soils are prone to leaching of nutrients, which makes them acidic. Brown soils have limited fertility and they typically present as dark grey-brown topsoils, caused by thin coatings of oxides weathered from parent material. Sub soils are brown, or yellow brown in colour.

PROJECT: EAM2410-REP-01 REPORT STATUS: FINAL PAGE: 3

¹ Manaaki Whenua- Landcare Research 2019. <u>S-map - New Zealand's national digital soil map. 10.7931/L1WC7</u>

The Manaaki Whenua, Landcare Research S map portal describes the soil at the sites as Wiku_15 (100) %, which is a well-drained loam over sand.

3.3 HYDROGEOLOGY

Groundwater in the area is sourced from the Te Hapara Sands Aquifer, a shallow sand aquifer that can be encountered just below the topsoil. The aquifer extends up to 20 metres thick in places and forms an unconfined to confined shallow water table aquifer. This aquifer extends inland for approximately 5 km from the coast. The Sands aquifer becomes confined by river silts inland, with sands interfinger with Waipaoa gravels and shallow fluvial deposits. The permeability of the aquifer decreases to the southwest, with the silt content of the sand increasing towards the Waipaoa Channel. Water takes within the aquifer range from 45- 1850m3/day, with variable water quality. Seasonal water level fluctuations tend to be within 0.5-1 metres; therefore, surface pumps are usually sufficient to extract water.

3.4 SURFACE WATER

The nearest surface waterway is the Taruheru River. The Taruheru River is located directly north of the site, approximately 100m distance from the site at its closest point. It commences in the hills of Waihirere and drains surface water to the east where it joins the Waimata River and flows into the Pacific Ocean.

4 PROPERTY HISTORY

A desktop study was undertaken to gain an understanding of the history of the site. The review looks to determine potential contaminants which may be present at the site because of past and present land uses. The following information was sourced to establish the history of the site:

- Gisborne District Council Property Search
- Historical Aerial Photographs
- HAIL review
- Site Visit

4.1 GISBORNE DISTRICT COUNCIL PROPERTY SEARCH

A review of Gisborne District Council Property records found the following documents on file:

556 ABERDEEN ROAD					
DATE	CONSENT/PERMIT	DESCRIPTION			
1970	CO37570	Alterations and additions to dwelling			
1981	12015689	Erect Garage			
1983	BCS0000149	Install Kent fireplace			
		Drainage plans			
1998	9800677	Erect carport			
560 ABERDEEN ROAD					
DATE	CONSENT/PERMIT	DESCRIPTION			
1995	BC9510766	Extend Shed			
2005	5464	Demolish Shed			
		Drainage Plans			

No files referring to potentially contaminating activities were found for this site.

4.2 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs of the site, from 1942 through to 2023, were sourced from Retrolens, Google earth, Google maps and Gisborne District Council. Aerial photographs for the years 1942, 1951, 1965, 1972, and 1988, 2001, 2010 and 2018 and 2022 are presented in Appendix C.

The earliest available aerial imagery is from 1942 and shows presence of dwellings on both 556 and 560 Aberdeen Road. A garage is present south of the dwelling on 560 Aberdeen Road, and a small shed is present in the far south of 556 Aberdeen Road.

No changes are noted to the site in imagery from 1951.

By 1965, the garage on 560 Aberdeen Road has been removed, and a small garage has been erected south of the dwelling on 556 Aberdeen Road. The garage in the far south of 556 Aberdeen has been removed.

Imagery from 1972 shows the construction of a very large shed in the far south of 556 Aberdeen Road.

By 1988, a small garage has been erected on 560 Aberdeen Road, south of the dwelling.

No significant changes are noted to the site through to the present day.

4.3 HAZARDOUS ACTIVITIES AND INDUSTRIES LIST

In accordance with Appendix C: Hazardous Activities and Industries List (HAIL) of the MfE NES for Assessing and Managing Contaminants in Soil to Protect Human Health, the site is considered HAIL under:

Section I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment.

The presence of two aged dwellings on the site, present from at least 1942 suggests the probable use of lead-based paints on building exteriors. Lead based paint contributes to soil contamination through weathering, sanding, and redecoration.

4.4 SITE VISIT

A site visit was completed on 5th September 2023. The following observations were made:

- The dwelling on 556 Aberdeen Road is constructed of painted timber weatherboard, corrugated iron roof and timber window frames. It has some asbestos cladding on the rear of the dwelling.
- A modern corrugated iron garage is located directly south of the dwelling on 556
 Aberdeen Road. It has concrete floor. A small garden shed, also of corrugated iron construction is located immediately south-west of this garage.
- A large painted corrugated iron shed with concrete flooring is in the far south of 556 Aberdeen Road. The paint on the exterior iron is peeling.
- The section around 556 Aberdeen is mainly grassed, with small gardens.
- The dwelling on 560 Aberdeen Road is a timber weatherboard home with a corrugated iron roof which appears to be painted. Paintwork on the dwelling is in very poor, peeling condition.
- A sleepout/garage is situated along the eastern boundary of 560 Aberdeen Road. It is of timber and corrugated iron construction.

 The southern half of 560 Aberdeen is grassed with gardens, and children's play equipment.

No visual or olfactory evidence of contamination or contaminating activities were observed during the site visit. Site photographs are presented in Appendix C.

5 CONCEPTUAL SITE MODEL

5.1 RATIONALE

The overall rationale for the site investigation was to determine whether historical activities on the Site may have caused soil contamination that would affect the proposed residential land use. The following is an analysis of potential contaminants, receptors, and pathways between potentially contaminated soils, and the proposed residential land use.

5.1.1 HAZARDOUS SUBSTANCES AND POTENTIAL CONTAMINANTS OF CONCERN

For the purposes of this investigation, the following contaminants were considered.

Metals

Metals occur naturally in the soil environment from the process of weathering of parent materials. Soils may become contaminated by the accumulation of metals and through leaded paints, land application of fertilisers, animal manures, sewage, pesticides, leaching from treated timber and wastewater irrigation. Most metals do not undergo microbial or chemical degradation hence, their total concentration in soils persists forever. Metals are associated with human illness, particularly nervous system damage from long term exposure in humans.

The main source of metal contamination within residential sections is lead based paint. The domestic paints available today contain only very small quantities of lead and are unlikely to be a hazard. However, the lead content of paints used in the past was generally much higher. When lead-based paint is sanded or power blasted during redecoration, high concentrations of lead dust become widely dissipated. Dust particles are deposited on surrounding surfaces, and in the soil, and may affect those exposed to dust and fragments long after the work is completed.

5.1.2 POTENTIALLY RELEVANT SENSITIVE HUMAN AND ECOLOGICAL RECEPTORS

The site is proposed for residential land use (10% produce), which is considered one of the most sensitive of land uses. The MFEs National Environmental Standard (NESCS) for soil contaminants, considers that residential landowners may use the land for activities such as vegetable gardening or fruit trees. These activities pose a risk to the consumer/landowner's where contaminated soils are involved in an exposure pathway.

The following potential receptors were identified as being relevant to the Site:

- Earthworks, construction, maintenance, and excavation contractors who may encounter potentially contaminated soil during the proposed works via inhalation (dusts).
- Future residents at the Site via inhalation (dusts) and/or ingestion of contaminated soil.

5.1.3 EXPOSURE PATHWAYS

A human health risk can only occur when there is a direct link between contaminant source and receptor. Potential complete pathways for this Site may include:

Dermal (skin) contact with soil, for gardening, construction.

- Direct contact and inhalation of dusts and soil during construction and site works.
- Consumption of foods grown in contaminated soils.
- Consumption of soils, particularly by small children.

6 FIELD INVESTIGATION

6.1 RATIONALE OF SAMPLE COLLECTION

Sampling locations across the Site were established using reference to the "Contaminated Land Guidelines No. 5" (MfE 2021). These guidelines set out (in Table B1; p91), indicate the "number of samples required to detect hotspot with 95 percent confidence".

Twelve samples were taken systematically across the site, with the locations presented in Figure 3, Appendix A.

Samples were collected using a 150mm soil augur and collected from the 0-150mm depth interval. Two duplicates were collected during sampling for statistical accuracy and precision of results.

Samples were collected directly into laboratory supplied containers and were placed in a chilly bin with ice packs for transport. Samples were couriered to an IANZ accredited laboratory (Hills Laboratories) under standard chain of custody procedures.

6.2 SITE LITHOLOGY

Site soils were observed to be consistent across the site as consisting of dark brown topsoil.

6.2.1 FIELD QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Quality Assurance and Quality Control procedures undertaken during sampling included the following:

- Changing of disposable gloves after each sample.
- Decontamination and rinsing of augur between each sample.
- Collection of soil samples in new, clean, appropriately labelled sample bags and jars.
- 10% Duplicate analysis (collection of two duplicates).
- Use of chain of custody procedures and forms.
- Use of IANZ accredited laboratories with in-house QA/QC procedures for the analyses requested.

7 ASSESSMENT CRITERIA

The following soil assessment criteria have been selected for the site.

7.1 THE NATIONAL ENVIRONMENTAL STANDARD FOR ASSESSING AND MANAGING CONTAMINANTS IN SOIL TO PROTECT HUMAN HEALTH (NESCS)

The NESCS sets national standards for contaminants in soil to protect human health. It contains a national set of soil contaminant standards (SCS) for 12 priority contaminants for five standard

PROJECT: EAM2410-REP-01 REPORT STATUS: FINAL PAGE: 7

land use scenarios. The land use category selected for this investigation was Residential (10% Produce) as described in the NES CS User Guide.

7.2 THE NATIONAL ENVIRONMENTAL PROTECTION MEASURE

In the absence of New Zealand specific risk-based human health criteria for beryllium, nickel and zinc, the Australian National Environment Protection Measure 2013 (NEPM) guidelines have been adopted for this investigation. The intention of the NEPM is to enable safe use of contaminated land to ensure that contaminated land is appropriately assessed prior to development. The NEPM covers a range of land uses. For the purposes of this assessment, the NEPM Health-based Investigation Level A (Residential land use) have been selected based on the land use and Site attributes.

7.3 BACKGROUND CONCENTRATIONS OF HEAVY METALS

In the absence of available published data for uncontaminated background soils in the Gisborne region, a control sample was collected. The control sample was collected from the Gisborne A & P Showgrounds. The sample was collected from an undisturbed and undeveloped area of grass. If concentrations of contaminants are found to be at or less than typical background concentrations, then the NES CS does not apply.

7.4 ECOLOGICAL SOIL GUIDELINE VALUES

To assess potential risk to environmental receptors, the criteria for Residential / Recreational area developed for protection of ecological receptors from the updated, Development of soil guideline values for the protection of ecological receptors (Eco-SGVs): Technical Document (Manaaki Whenua Landcare Research, 2019) were used. Criteria were selected assuming a typical soil, aged contamination source, and a residential land use.

8 ANALYTICAL RESULTS

The following sections discusses the analytical results by analyte and compares against the adopted human health guideline criteria. In this case, the most appropriate SCS is likely to be those for the NES land use scenario of Residential (10% Produce). The NES description of this land use is as follows:

"Standard residential Lot, for single dwelling sites with gardens, including homegrown produce consumption (10 percent)".

The analytical results are summarised in Table 1 in Appendix D, along with the laboratory reports. The results of analysis have been compared directly against appropriate (where available) Soil Contaminant Standards (SCS) from the NES Priority contaminants list (MfE, 2012).

8.1 BACKGROUND SOIL CONCENTRATIONS

Soils at the site were compared with the background soil concentrations of a control sample, collected from parkland within the A & P Showgrounds in Gisborne by EAM. The soil here is considered unlikely to have been exposed to potentially contaminating activities.

The control sample shows very low concentrations of all metals. The sample results which were found to be "at or about the value" of the concentrations of the control sample were considered background.

All samples collected at the site exceed the Gisborne control sample value of 38mg/kg for lead. Concentrations range from 111mg/kg to 2,600mg/kg.

Zinc concentrations exceed the Gisborne control sample value of 56mg/kg in all sample locations, ranging from 91mg/kg to 720 mg/kg.

Mild chromium, copper, cadmium, and nickel exceedance were reported in sample locations #7, #10, #11 and #12.

Arsenic exceeds the background value of 4mg/kg in sample location #4, reporting 12mg/kg, and in sample location #10, reporting 32mg/kg.

8.2 METALS/METALLOIDS

Soil metal analysis was compared with the NES standards for Residential land use (10% produce). All sample locations except #2 and #5 reported concentrations of lead in exceedance of the NES residential standards of 210 mg/kg. Samples reported concentrations of lead of 1070mg/kg (#1), 230mg/kg (#3), 1010mg/kg (#4), 2600mg/kg (#6), 730 mg/kg (#7), 240 mg/kg, (#8), 380mg/kg (#9), 620 mg/kg (#10), 1130mg/kg (#11) and 1090mg/kg (#12).

Arsenic was reported above the NES standard of 20mg/kg in sample location #10, reporting a concentration of 32mg/kg.

Sample locations #2 and #5 reported concentrations of metals within the NES standards, being 210mg/kg and 111mg/kg, respectively.

8.3 ECOLOGICAL SOIL GUIDELINE VALUES

Sample locations #1, #4, #6 #11 and #12 exceeds the Landcare Updated Development of Soil Guideline Values for Protection of Ecological Receptors (Eco-SGVs) for lead (900mg/kg), reporting concentrations of 1070mg/kg, 1010 mg/kg, 2600 mg/kg, 1130 mg/kg, and 1090mg/kg.

Sample locations #1, #3. #4, #6, #7, #11 and #12 exceeds the Landcare Updated Development of Soil Guideline Values for Protection of Ecological Receptors (Eco-SGVs) for zinc (300mg/kg), reporting concentrations of 340mg/kg, 580 mg/kg, 460mg/kg, 530mg/kg,720mg/kg, and 390mg/kg, respectively.

8.4 QUALITY ASSURANCE AND QUALITY CONTROL

8.4.1 FIELD DUPLICATES

Duplicate analysis was completed as a means for determining uncertainty, accuracy, and precision of laboratory analysis. Two duplicate samples were collected during sampling at the same sample location and depth interval as Sample #1 and Sample #9 and labelled as #1a, and #9a, respectively.

The RPD between samples was calculated according to the following formula:

$$RPD = \frac{(Result\ No.1 - Result\ No.2)\ x\ 100}{(Mean\ of\ result\ No.1 + result\ No.2)}$$

The typical data quality objective is for an RPD to be within 30 - 50% (MfE, 2021). The RPD results were reported within the data quality objective. Mean RPD for sample location #1 was reported as 7%, and for sample location #9 duplicate pair was 10%. RPD calculations are presented in Appendix D.

8.5 RISK ASSESSMENT

A hazard – pathway – receptor pollution linkage is considered to aid assessment of risk associated with results of the site investigation.

For contaminated soils to pose a risk to a receptor, a complete pathway must exist between the contamination source and the identified receptor(s). If there is an incomplete pathway, then there is no risk. In this instance, there is a risk to human health across the site to lead and arsenic exposure.

9 CONCLUSIONS AND RECOMMENDATIONS

EAM was engaged to undertake a Detailed Site Investigation of 556-560 Aberdeen Road, Gisborne. The objectives of the investigation were to evaluate:

- The type, extent, and level of contamination, if any, within the proposed subdivision sites.
- 2. Whether contaminants of concern identified present an unacceptable risk to human health or identified environmental receptors.
- 3. Whether the soils remaining on-site are suitable for the proposed end use.

A detailed site history was undertaken to review the historical land use at the site. The site has been a residential section since at least 1942.

This investigation identified one potential site activities included on the HAIL (Ministry for the Environment, 2011):

 Section I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment – This was considered based on the potential for lead-based paint which was likely used on the buildings to contaminate site soils.

Due to the potential HAIL activities at the site, twelve soil samples were collected systematically across the site and analysed for heavy metals.

Laboratory analysis results and comparison with relevant NZ guidelines indicate that:

- Lead and zinc concentrations were reported well above regional background concentrations for the Gisborne area, when compared with a control sample.
- All sample locations except #2 and #5 reported concentrations of lead in exceedance of the NES residential standards of 210 mg/kg. Samples reported concentrations of lead of 1070mg/kg (#1), 230mg/kg (#3), 1010mg/kg (#4), 2600mg/kg (#6), 730 mg/kg (#7), 240 mg/kg, (#8), 380mg/kg (#9), 620 mg/kg (#10), 1130mg/kg (#11) and 1090mg/kg (#12).
- Arsenic was reported above the NES standard of 20mg/kg in sample location #10, reporting a concentration of 32mg/kg.
- Sample locations #2 and #5 reported concentrations of metals within the NES standards, being 210mg/kg and 111mg/kg, respectively.
- Sample locations #1, #4, #6 #11 and #12 exceeds the Landcare Updated Development of Soil Guideline Values for Protection of Ecological Receptors (Eco-SGVs) for lead (900mg/kg), reporting concentrations of 1070mg/kg, 1010 mg/kg, 2600 mg/kg, 1130 mg/kg, and 1090mg/kg.
- Sample locations #1, #3. #4, #6, #7, #11 and #12 exceeds the Landcare Updated Development of Soil Guideline Values for Protection of Ecological Receptors (Eco-SGVs)

- for zinc (300mg/kg), reporting concentrations of 340mg/kg, 580 mg/kg, 460mg/kg, 530mg/kg, 720mg/kg, and 390mg/kg, respectively.
- The RPD results were reported within the data quality objective.

Elevated metals of lead, and in one location, arsenic, are above NES residential standards, thus there is a human health risk unless addressed through remediation. While further investigation is required, we would expect remediation to be possible and for the site to be redeveloped for residential purposes.

Based on the exceedance of background soil concentrations, and ecological soil guideline values, off-site disposal options, should they be required as part of development will require planning, consideration, and possible resource consent approval.

Any soils exceeding uncontaminated background values, have a degree of anthropogenic contamination. Should offsite disposal be required, this can only be through resource consent for an alternative land use; or disposed to appropriate landfill facility. Soils may be required to go to a licenced A Class landfill facility.

The best option is for excavated soils to be retained on site, in either noise bund, or garden areas, however we appreciate that due to the density of development, this option is unlikely. Options to enable soils to remain on site would be to pile foundations for the new buildings rather than excavate for concrete rafts. Alternatively, topsoil could be geotechnically engineered to create structurally compliant building platforms.

This investigation confirms that the site is highly likely to pose a risk to human health, and remediation will be required to ensure its suitability for the proposed development.

10 REFERENCES

MfE 2021 Contaminated Land Management Guidelines No.1 Reporting on Contaminated Sites in New Zealand. Ministry for the Environment.

MfE 2012 Users' Guide National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Ministry for the Environment.

MfE 2021 Contaminated Land Management Guidelines No.5; Site Investigation and Analysis of Soil. Ministry for the Environment.

Hawkes Bay Region: Background Soil Concentrations for Managing Soil Quality, Landcare Research, 2014.

https://soils-maps.landcareresearch.co.nz (2020)

NZGS. (2005). New Zealand Geotechnical Society December 2005 - Guidelines for the classification and description of soil and rock for engineering purposes.

APPENDIX A-FIGURES

PROJECT: EAM 2410-REP-01 REPORT STATUS: FINAL

DETAILED SITE INVESTIGATION: 556-560 ABERDEEN ROAD, GISBORNE

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

FIGURE 2(a). DRAFT SCHEME PLAN FOR DEVELOPMENT

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

DETAILED SITE INVESTIGATION: 556-560 ABERDEEN ROAD, GISBORNE

FIGURE 2(b). DRAFT SCHEME PLAN FOR DEVELOPMENT

PROJECT: EAM 2410-REP-01 REPORT STATUS: FINAL

DETAILED SITE INVESTIGATION: 556-560 ABERDEEN ROAD, GISBORNE

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

APPENDIX B- AERIAL PHOTOGRAPHY

PROJECT: EAM 2410-REP-01 REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

PROJECT: EAM 2410-REP-01

REPORT STATUS: FINAL

APPENDIX C-SITE PHOTOGRAPHS

Above. Front of 560 Aberdeen Road.

Top. Looking east towards rear of dwelling on 556 Aberdeen Road. **Middle.** Back of 560 Aberdeen Road dwelling. **Bottom.** Garage at 556 Aberdeen Road.

Top and middle. Large garage in far south of 556 Aberdeen Road. **Bottom**. Small garden shed on 560 Aberdeen Road.

Top. Front of 560 Aberdeen Road. **Middle**. Sheds on eastern boundary of 560. **Bottom**. Photo looking north-west at side of dwelling on 560 Aberdeen Road.

APPENDIX D- LABORATORY ANALYSIS AND REPORTS

TABLE 1. SOIL METAL RESULTS (mg/kg)

	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
Sample Name:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aberdeen #1 05-Sep-2023	5	0.23	8	9	1,070	6	340
Aberdeen #2 05-Sep-2023	4	0.14	6	7	210	5	194
Aberdeen #3 05-Sep-2023	9	0.25	6	16	230	5	<u>580</u>
Aberdeen #4 05-Sep-2023	12	0.46	15	28	1,010	9	<u>460</u>
Aberdeen #5 05-Sep-2023	3	< 0.10	5	9	111	6	91
Aberdeen #6 05-Sep-2023	8	0.42	11	16	2,600	9	<u>530</u>
Aberdeen #7 05-Sep-2023	9	0.89	17	52	730	8	820
Aberdeen #8 05-Sep-2023	5	0.19	8	15	240	7	240
Aberdeen #9 05-Sep-2023	6	0.45	16	37	380	7	380
Aberdeen #10 05-Sep-2023	32	1.09	33	64	620	11	690
Aberdeen #11 05-Sep-2023	6	0.87	11	42	1,130	9	720
Aberdeen #12 05-Sep-2023	7	0.5	16	33	1,090	7	390
Aberdeen #1a 05-Sep-2023	6	0.32	9	14	700	6	300
Aberdeen #9a 05-Sep-2023	6	0.47	19	45	410	8	420
Gisborne Uncontaminated Background Soil 1	4	0.21	8	9	38	7	56
NES Residential ²	20	3	460	>10,000	210		
NEPM Residential 3				- Constitution (CD)		400	7400
Landcare Eco SGV's 4	60	12	390	240	900	NGV	300

Exceeds Gisborne Uncontaminated Background Soil, Control sample collected Gisborne A & P Showgrounds.

TABLE 2. RELATIVE PERCENTILE DIFFERENCES

	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
Sample Name:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aberdeen #1 05-Sep-2023	5	0.23	8	9	1,070	6	<u>340</u>
Aberdeen #1a 05-Sep-2023	6	0.32	9	14	700	6	300
Mean	6	0	9	12	885	6	320
RPD (%)	-18	-33	-12	-43	42	0	13
Aberdeen #9 05-Sep-2023	6	0.45	16	37	380	7	380
Aberdeen #9a 05-Sep-2023	6	0.47	19	45	410	8	<u>420</u>
Mean	6	0	18	41	395	8	400
RPD (%)	0	-4	-17	-20	-8	-13	-10

¹²³ Exceeds Ecological SGV's

RED Exceeds NES Residential

¹⁻Gisborne Control sample. Collected from Gisborne A & P showgrounds in an undeveloped area.

² -MfE, June 2011. Resource Management (National Environmental Standard for Assessing and managing contaminants in Soil to Protect Human Health) Regulations 2011

³-National Environmental Protection (Assessment of Site Contamination) Measure, 1999.

⁴ Landcare updated Development of Soil Guideline Values for Protection of Ecological Receptors (Eco SGVs). Assumes residential/recreational area, aged source, typical soil

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 +64 7 858 2000 Private Bag 3205 Hamilton 3240 New Zealand ## www.hill-labs.co.nz

mail@hill-labs.co.nz

Job Information Summary

Page 1 of 1

Client: EAM NZ Limited Contact: Karen Toulmin C/- EAM NZ Limited

233B Thompson Road

RD 10 Hastings 4180 Lab No: 3358681 Date Registered: 06-Sep-2023 2:50 pm Priority:

High Quote No: 72316 Order No:

Client Reference: Aberdeen Road

Add. Client Ref:

Submitted By: Karen Toulmin Charge To: EAM NZ Limited **Target Date:** 08-Sep-2023 4:30 pm

Sam	ples			
No	Sample Name	Sample Type	Containers	Tests Requested
1	Aberdeen #1 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
2	Aberdeen #2 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
3	Aberdeen #3 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
4	Aberdeen #4 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
5	Aberdeen #5 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
6	Aberdeen #6 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
7	Aberdeen #7 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
8	Aberdeen #8 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
9	Aberdeen #9 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
10	Aberdeen #10 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
11	Aberdeen #11 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
12	Aberdeen #12 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level
13	Aberdeen #1a 05-Sep-2023	Sail	срВад	Heavy Metals, Screen Level
14	Aberdeen #9a 05-Sep-2023	Soil	срВад	Heavy Metals, Screen Level

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that disutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of markyes. A till string of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 26 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Environmental Solids Sample Drying	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	*	1-14			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-14			

Lab No: 3358681 Hill Labs Page 1 of 1

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

% 0508 HILL LAB (44 555 22) **%** +64 7 858 2000 mail@hill-labs.co.nz mww.hill-labs.co.nz

Certificate of Analysis

Page 1 of 2

Client:

EAM NZ Limited Contact: Karen Toulmin C/- EAM NZ Limited 233B Thompson Road **RD 10** Hastings 4180

Lab No: Date Received: Date Reported: Quote No: Order No:

3358681 06-Sep-2023 08-Sep-2023 72316

Client Reference: Aberdeen Road Submitted By: Karen Toulmin

			Su	bmitted By:	Karen Touin	ıın
Sample Type: Soil						
	Sample Name:	Aberdeen #1 05-Sep-2023	Aberdeen #2 05-Sep-2023	Aberdeen #3 05-Sep-2023	Aberdeen #4 05-Sep-2023	Aberdeen #5 05-Sep-2023
	Lab Number:	3358681.1	3358681.2	3358681.3	3358681.4	3358681.5
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	5	4	9	12	3
Total Recoverable Cadmium	mg/kg dry wt	0.23	0.14	0.25	0.46	< 0.10
Total Recoverable Chromium mg/kg dry k		8	6	6	15	5
Total Recoverable Copper	mg/kg dry wt	9	7	16	28	9
Total Recoverable Lead	mg/kg dry wt	1,070	210	230	1,010	111
Total Recoverable Nickel	mg/kg dry wt	6	5	5	9	6
Total Recoverable Zinc	mg/kg dry wt	340	194	580	460	91
	Sample Name:	Aberdeen #6 05-Sep-2023	Aberdeen #7 05-Sep-2023	Aberdeen #8 05-Sep-2023	Aberdeen #9 05-Sep-2023	Aberdeen #10 05-Sep-2023
	Lab Number:	3358681.6	3358681.7	3358681.8	3358681.9	3358681.10
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	8	9	5	6	32
Total Recoverable Cadmium	mg/kg dry wt	0.42	0.89	0.19	0.45	1.09
Total Recoverable Chromium	mg/kg dry wt	11	17	8	16	33
Total Recoverable Copper	mg/kg dry wt	16	52	15	37	64
Total Recoverable Lead	mg/kg dry wt	2,600	730	240	380	620
Total Recoverable Nickel	mg/kg dry wt	9	8	7	7	11
Total Recoverable Zinc	mg/kg dry wt	530	820	240	380	690
	Sample Name:	Aberdeen #11 05-Sep-2023	Aberdeer 05-Sep-		erdeen #1a Sep-2023	Aberdeen #9a 05-Sep-2023
	Lab Number:	3358681.11	335868	1.12 33	58681.13	3358681.14
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	6	7		6	6
Total Recoverable Cadmium	mg/kg dry wt	0.87	0.50		0.32	0.47
Total Recoverable Chromium	mg/kg dry wt	11	16		9	19
Total Recoverable Copper	mg/kg dry wt	42	33		14	45
Total Recoverable Lead	mg/kg dry wt	1,130	1,090	0	700	410
Total Recoverable Nickel	mg/kg dry wt	9	7		6	8
Total Recoverable Zinc	mg/kg dry wt	720	390		300	420

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analyses. A full isling of corrispounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at HII Labs, 28 Duke Street, Frankton, Hamilton 3004.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.		1-14			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP- MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-14			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 06-Sep-2023 and 08-Sep-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

Hill Labs

Page 2 of 2

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Client Services Manager - Environmental

Lab No: 3358681-SPv1

APPENDIX E- REMEDIAL ACTION PLAN

REMEDIAL ACTION PLAN

REMEDIAL AREAS

Based on the observations and results of the DSI, lead contamination was identified above the NES of 210mg/kg in all sample locations except #2 and #5. Samples reported concentrations of lead of 1070mg/kg (#1), 230mg/kg (#3), 1010mg/kg (#4), 2600mg/kg (#6), 730 mg/kg (#7), 240 mg/kg, (#8), 380mg/kg (#9), 620 mg/kg (#10), 1130mg/kg (#11) and 1090mg/kg (#12).

Arsenic was reported above the NES standard of 20mg/kg in sample location #10, reporting a concentration of 32mg/kg.

EAM recommend a XRF investigation is completed to delineate the boundaries of soil contamination across the site. XRF is a handheld X-Ray Fluorescence (XRF) analyser used to measure metal concentrations within the soil. XRF provides fast, accurate, and non-destructive alloy identification and elemental analysis. It is considered highly accurate in relation with laboratory analysis.

XRF should be utilised to assess both the depth and lateral extent of contamination.

Establishment of depth and lateral contamination will provide approximate volumes of soil requiring remediation, and volumes of soil above uncontaminated background values.

REMEDIATION OPTIONS ASSESSMENT

Options which may be considered feasible are as follows, although again, may be dependent on the volume of contaminated soil established.

- 1. In-situ vertical mixing of impacted material with underlying clean soil, and re-use.
- 2. Excavation for disposal to landfill.
- 3. A combination of 3 and 4.

As a rule of thumb, soil mixing is only considered feasible providing soil concentrations are within 2-3 times the acceptable concentrations set out by the NES. Based on the present findings, soil lead concentrations are well above the feasible soil mixing fractions and therefore only areas with concentrations <600mg/kg may be acceptable to achieve sufficient dilution.

Excavation and disposal of contaminated material to landfill is the least preferred option due to cost and environmental impacts from haulage and use of landfill space, however where concentrations of lead contamination present are too high for mixing, then this is likely to be the only practical option.

REMEDIAL CRITERIA

The proposed remedial assessment criteria for lead and arsenic in a residential (10% produce) land use are shown in Table 1.

Table 1. Summary of Remedial Criteria

CONTAMINANT	NES (mg/kg)
Lead	210
Arsenic	20mg/kg

REMEDIAL ACTION PLAN

Prior to any remedial activities commencing, the SQEP will screen the surface soils at the site with a hand-held Olympus Vanta X-Ray Fluorescence spectrometer at the site to delineate the lateral extent of contamination. Depth analysis will be completed across the site by excavating augur holes to access deeper soils for screening. Boundaries will be marked. Approximate volumes of contaminated soil will be estimated, and recordings of lead and arsenic concentrations will be taken to establish the best method of remedial action.

The following methodologies are proposed to remediate the site to National Environmental standards for Residential land use. The remedial works will be supervised by a Suitably Qualified Environmental Practitioner (SQEP) and will be completed in accordance with the earthwork's procedures and unexpected discovery of contamination protocols as discussed in this plan.

In situ vertical mixing of contaminated soil

Should the XRF investigation find depth and concentrations of the contaminated material suitable for soil mixing, then the following procedures will be followed:

- 1. The SQEP will mark out the remedial area on the ground surface.
- 2. Soils will be blended during dry conditions, and not after recent heavy rain.
- Soils in the remedial area will be blended using either a tractor towing a disc plough, or an
 excavator with a bucket large enough to achieve a cutting depth of at least 0.3 m bgl. The
 tractor or excavator will mix the soil in multiple directions until site soils are thoroughly
 mixed.
- The SQEP will regularly check the mixed soils using the XRF. Mixing will continue until all soils achieve NES.
- 5. Upon completion of mixing, the SQEP will validate the remediated area on an approximate 2m x 2m grid using the XRF.
- 6. The SQEP will collect 10% validation samples for laboratory analysis.

Excavation and removal of contaminated soil to landfill.

- 1. The SQEP will mark out the remedial areas on the ground surface
- 2. Machinery / vehicles will not enter the remedial zones.
- The remedial areas will be excavated to their target depth as instructed by the SQEP. The SQEP will continually screen the base and sides of the excavation to ensure that remaining concentrations meet NES. Further excavation will be completed as required.
- 4. Material will be loaded directly into trucks, which will be covered for transportation to landfill.
- 5. Upon completion of excavation, the SQEP will map and record lead concentrations using XRF in a 2m x 2m grid pattern across the excavated area.
- 6. The SQEP will collect 10% validation samples for laboratory validation analysis.

REMEDIAL PLAN-GENERAL

EARTHWORKS MANAGEMENT

To ensure the site is effectively remediated, removed/ and tracked, a detailed earthworks management plan has been developed.

WASTE MANAGEMENT

Contaminated soil excavated from the site and disposed of to an appropriate landfill facility, will be subject to leachate testing.

VALIDATION

Sampling at the base and edges of the stripped areas is required to confirm that soil contamination has been removed, and that any remaining contamination levels are below the Soil contamination standards for Residential land use.

A detailed report will be prepared after contaminated soils have been removed/mixed and laboratory analysis has verified that validation samples across the site are within the acceptable standards. This Site Validation Report will confirm the adherence to the Site Remedial Action Plan. The report will detail the remedial actions and processes carried out, present photographs documenting site activities, soil sample locations and will include laboratory results.

HEALTH AND SAFETY

This section relates only to those occupational health and safety issues resulting from the elevated levels of lead and arsenic associated with site soils and does not cover general site working requirements. The following key Health and Safety precautions should be implemented:

- All workers at the site should be made aware of the presence of elevated concentrations
 of metals.
- 2. A consideration of the elevated lead levels is the potential for the site works to generate dust. Dust generation increases the likelihood of direct skin contact, and ingestion through inhalation. Therefore, adherence to the following site working precautions is essential. Dust minimisation measures are required, including, but not limited to:
 - Ensuring earthworks are undertaken only during low wind conditions.
 - Installation of high mesh fencing around the perimeter of the site to prevent dust drift into neighbouring residential properties.
 - Use of appropriate dust filters in excavation machinery and closed in cab.
- 3. Personal Protective Equipment (PPE) is required, the minimum being:
 - · Safety Vest and Safety boots
 - Gloves for soil handling
 - High quality ventilation mask
 - Goggles or safety glasses
 - First aid and eye wash kits should be available on site.
- 4. Good hygiene should always be observed:
 - · Follow measures to avoid skin contact, inhalation, and ingestion
 - · No eating, drinking of smoking during site remedial works
 - Thorough hand washing before eating, drinking, or smoking, prior to leaving site.
 - Changing of clothing on completion of daily site works prior to leaving the site.
- Silt/Mud controls. To ensure mud is not spread onto public roads from vehicles and machinery, (including around the source site to avoid transfer of contamination), earthworks will only occur in dry weather.

UNEXPECTED DISCOVERY OF CONTAMINATION PROTOCOL

Should unexpected contamination be encountered during site remedial works all site work must immediately stop, and the potential hazards must be assessed. Report the discovery to the SQEP or manager on site. Contamination may present as:

- Staining and/or discolouration of soil
- Refuse and/or debris such as brick, glass, rubble, timber, domestic waste
- Drums or underground storage tanks
- Odour, such as hydrocarbons, sewage or rotting material.
- Presence of discoloured surface water or leachate
- Oils, grease, oilv substances
- Asbestos

Should asbestos be observed or suspected during the excavation works, all work shall cease and Guidelines for the Management and Removal of Asbestos (revised 1999) for the Department of Labour, and the Health & Safety in Employment (Asbestos) Regulations (1998) will be followed. Works can recommence once all asbestos has been removed safely. Any such asbestos works (assessment, delineation, removal, and verification) would be undertaken by a specialist asbestos contractor.

A first response protocol for unexpected contamination is as follows:

- 1. Stop work immediately. Assess the potential immediate hazards. If the discovery is assessed as presenting an imminent hazard or danger, notify emergency services dialling 111. If unsafe, move away, secure the area, and notify workers in the nearby area.
- 2. Advise SQEP, site manager or client representative
- 3. Work will not resume or commence until the SQEP has provided clearance.

SITE VALIDATION REPORT

A SVR will be produced and provided to council, summarising the works completed and confirming that the remediated areas are suitable for residential (10% produce) land use. The SVR will include a plan showing final extent of remedial areas and validation sample locations, validation sample results, unexpected discovery of contamination and how it was managed (if any), copies of receipts for waste disposal and information about imported material.

Appendix 6

Servicing Report

556 - 560 ABERDEEN ROAD, GISBORNE SERVICING REPORT – J23215-1

Report prepared by Scott Estcourt 10 October 2023

Scott Estcourt	10 October 2023	//-
Johan Ehlers	10 October 2023	all.

NO.	DATE	DESCRIPTION	PREPARED BY	REVIEWED BY	SIGNED

1 Executive Summary

This report has been prepared to submit to the Gisborne District Council for Resource Consent Purposes.

This document details the proposed civil engineering works, assessment of effects and associated mitigation measures for the proposed residential subdivision at 556 - 560 Aberdeen Road, Gisborne. Preliminary design drawings have been prepared for earthworks, stormwater, wastewater, and water supply.

This report sets out the design basis and describes the assessments that were carried out to:

- Demonstrate how stormwater quality and quantity are to be managed, including consideration overland flow paths through the site from the wider catchment.
- Demonstrate that the site can be serviced, taking into consideration the capacity of the local networks and the requirements of the Gisborne District Council.
- Demonstrates that conformance to standards and codes can be achieved.

The development consists of 5 duplex units and 2 single units. Design flow rates based on 12 dwellings are provided in this report to provide a basis for the Council to access the potential impact of the development on the Council's wastewater, stormwater, and water supply networks.

Bulk Earthworks

Earthworks will be required to shape the site such that stormwater runoff is controlled by draining lots to the proposed roads and defined overland flow paths to avoid adverse stormwater effects on adjoining lots.

The topographical survey of the existing site indicates that approximately a third of the site falls towards Aberdeen Road, and the remainder towards the neighbouring properties to the south. The concept earthworks design aims to match existing levels as much as practical.

Stormwater

Most of the site drains from north to south. The existing ground level at the southern part of the site is approximately 1m lower than at the road boundary. This is a significant constraint. It will not be practicable to raise the southern part of the site to achieve drainage to Aberdeen Road. Part of the site will have to continue to drain southwards.

Overall, it is proposed to limit the stormwater runoff from the site to the pre-development levels during the 1 in 100-year event. Rainwater tanks will be installed to attenuate runoff from all roof areas prior to being discharged to Aberdeen Road via kerb connections. A 'Rainsmart' system which will be situated under the access road and carpark area to attenuate and dispose runoff from contributing areas by soakage.

The concept design aims to ensure that the sum of the of the runoff rates from unattenuated areas, the discharge from the rainwater tanks, and the overflow from the 'Rainsmart' system is no greater than for the pre-developed site during the 1 in 100-year event.

Wastewater

It is proposed to extend a DN150 connection into the development from the DN150 in Aberdeen Road. Individual DN100 connections will extend from each dwelling unit to connect to the common private wastewater pipeline within the accessway.

The calculated average daily dry weather flow (ADWF) for the development is 7,860L (0.09L/s), and the estimated peak wet weather flow (PWWF) is 30,720L (0.36L/s).

INFIR

Water Supply

It is proposed to extend a DN50 connection into the development from the DN100 water main in Aberdeen Road. A testable backflow prevention device and meter will be installed inside the boundary of the development. Individual connections to the common private water supply pipeline will be provided to each dwelling. A manifold will be installed within each dwelling lot.

The calculated average daily consuption for the development is 0.15L/s.

Fire hydrants must be provided within 135m of fire risks, such that 12.5L/s is available within 135m run distance and 25L/s is available within 270m run distance from a maximum of two fire hydrants. The two hydrants in Aberdeen Road between Asquith Street and Stanley Road satisfy these requirements.

Power and Communications

Drawings have been created to show the proposed alignments for power and telecommunication services within the site. Liaison with the relevant providers has not yet been undertaken.

Table of Contents

1	E	xecutiv	ve Summary	3
2	P	urpose	of this Report	7
3	Si	ite De	scription	8
4	E	xisting	Site	9
5	В	ulk Ea	rthworks	10
	5.1	Ear	thworks Proposal	10
	5.	.1.1	Summary of Earthworks Volumes	10
6	S	tormw	ater	11
	6.1	Ger	neral	11
	6.2	Sto	rmwater Proposal	11
	6.	.2.1	Rainwater Tanks	11
	6.3	Rai	nsmart System	12
	6.	.3.1	Allowable Runoff	12
	6.	.3.2	Post Development Rates	12
	6.	.3.3	Rainsmart system sizing	13
	6.4	Sto	mwater Treatment	14
	6.5	Floo	od Assessment	15
7	A	ccess	and Parking	17
8	W	/astew	rater	18
	8.1	Was	stewater Proposal	18
	8.2	Was	stewater Design Flow Rates	18
9	W	/ater S	Supply	19
	9.1	Wat	ter Supply Proposal	19
	9.	.1.1	Water Supply Design Flow Rates	19
	9.1	Fire	fighting requirements	19
1() P	ower a	and Telecommunications	20

Table of Tables

Table 1 - Proposed development	8
Table 2 – Preliminary earthworks volume summary	
Table 3 - Rainwater tank summary	
Table 4 - Pre-development 1 in 100-year runoff	12
Table 5 - Allowable Rainsmart system overflow rate	13
Table 6 - Carparks and associated turning area requirements	17
Table 7 - Design wastewater flows	18
Table of Figures	
Figure 1 - Scheme Plan	8
Figure 2 - Existing Site	9
Figure 3 – Gisborne District Council flood levels	16

2 Purpose of this Report

This document details the proposed civil engineering works, assessment of effects and associated mitigation measures for the proposed residential subdivision at 556 and 560 Aberdeen Road, Gisborne. Preliminary design drawings have been prepared for earthworks, stormwater, wastewater, and water supply.

The information is at a level suitable for subdivision consent application. It is not at the level of detail required for building consent or engineering approval. Further regulatory approvals that will be required for this development include engineering approval and building consent approval from the Gisborne District Council.

3 Site Description

The site comprises the property located at 556-560 Aberdeen Road, Gisborne, occupying an area of 0.27 ha. The development will consist of the following.

Table 1 - Proposed development

Туре	Number	Lots
2- storey duplex unit	8	1, 2, 7, 8, 9, 10, 11, 12
Standard duplex	2	5, 6
House	1	4
Accessible	1	3

Figure 1 - Scheme Plan

4 Existing Site

The existing site consists of three parcels, occupied by two houses and three outbuildings. Both properties contain some impervious areas.

Figure 2 - Existing Site

ADDRESS	LEGAL DESCRIPTION	AREA (m²)
556 Aberdeen Road	LOT 2 PT 1 DP1585	1,659
560 Aberdeen Road	LOT 11 DP3481	1,012
1	OTAL	2,671

5 Bulk Earthworks

5.1 Earthworks Proposal

Earthworks will be required to shape the site such that stormwater runoff is controlled by draining lots to the proposed access lane and defined overland flow paths to avoid adverse stormwater effects on adjoining properties.

The topographical survey of the existing site indicates that approximately a third of the site falls towards Aberdeen Road, and the remainder towards the neighbouring properties to the south. The concept earthworks design aims to match existing levels as much as practical.

5.1.1 Summary of Earthworks Volumes

The earthworks concept plan is provided in Appendix A. Overall, the site will require the following net earthworks volumes from the existing ground level to the finished level.

Table 2 - Preliminary earthworks volume summary

AREA (m2)	CUT (m³)	FILL (m³)	NET FILL VOLUME (m³)
2,671	135	281	146

6 Stormwater

6.1 General

Most of the site drains from north to south. The existing ground level at the southern part of the site is approximately 1m lower than at the road boundary. This is a significant constraint. It will not be practicable to raise the southern part of the site to achieve drainage to Aberdeen Road. Part of the site will have to continue to drain southwards.

6.2 Stormwater Proposal

Overall, it is proposed to limit the stormwater runoff from the site to the pre-development levels during the 1 in 100-year event. Rainwater tanks will be installed to attenuate runoff from all roof areas prior to being discharged to Aberdeen Road via kerb connections. A 'Rainsmart' system which will be situated under the access road and carpark area to attenuate and dispose runoff from contributing areas by soakage.

The concept design aims to ensure that the sum of the of the runoff rates from unattenuated areas, the discharge from the rainwater tanks, and the overflow from the 'Rainsmart' system is no greater than for the pre-developed site during the 1 in 100-year event.

6.2.1 Rainwater Tanks

Each dwelling unit will have a rainwater tank to receive roof runoff. Sizing of the rainwater tanks aims to ensure that they do not overflow during the 1 in 100-year event. The proposed tanks size, orifice sizes and corresponding discharge rates from each lot are summarised from the calculations provided in Appendix B in Table 3 below.

Table 3 - Rainwater tank summary

LOT	ORIFICE SIZE (mm)	DISCHARGE RATE (L/s)	ROOF AREA (m²)	TANK SIZE (Litres)
1	16	0.6	49	1,000
2	16	0.6	49	1,000
3	32	2.4	125	2,000
4	20	0.9	89	2,000
5	20	0.9	90	2,000
6	20	0.9	90	2,000
7	16	0.6	49	1,000
8	16	0.6	49	1,000
9	16	0.6	49	1,000
10	16	0.6	49	1,000
11	16	0.6	49	1,000
12	16	0.6	49	1,000
-	TOTAL	10.1	788	16,000

The combined discharge rate of 9.2L/s exceeds the capacity of a double kerb connection of 8L/s. A dispensation is requested to allow both, a double kerb connection and a single kerb connection to Aberdeen Road.

6.3 Rainsmart System

6.3.1 Allowable Runoff

Total runoff from the site shall be limited to pre-development rates for the 1 in 100-year event.

The total pre-development runoff from the site during the 1 in 100-year event based on the 20-minute storm duration (from the calculations contained in Appendix B) is provided in Table 4.

Table 4 - Pre-development 1 in 100-year runoff

SUB-CATCHMENT	A: AREA (m2)	CxA	Q: 1 in 100-YEAR RUNOFF RATE (L/S)
NORTH (to Aberdeen Road)	1,242	630.3	14.3
SOUTH	1,429	425.7	13.7
TOTAL	2,671	1,056.0	28.0

Sizing of the Rainsmart system aim to ensure that the sum of the discharge rates from the roof tanks, unattenuated surfaces and overflows from the Rainsmart system to not exceed pre-development levels.

6.3.2 Post Development Rates

North Catchment

The total runoff from the development to Aberdeen Road is the sum of the discharge from the rainwater tanks, and the paved and landscaped areas of lots 1, 2, 9, 10, 11 and 12 fronting Aberdeen Road.

SURFACE TYPE	DISCHARGE RATE (L/s)	
Unattenuated surface runoff	9.8	
Rainwater tanks combined discharge rate	10.1	
TOTAL	19.9	

The discharge rate of 19.9L/s is 5.7L/s greater than the pre-development rate of 14.3L/s runoff to Aberdeen Road.

South Catchment

A Rainsmart system is proposed to attenuate and dispose runoff from contributing surface areas to ground by soakage. The Rainsmart system has been sized to ensure that the total runoff from the site does not exceed the pre-development rate of runoff during the 1 in 100-year event.

The allowable overflow rate from the Rainsmart system is 0.9L/s as summarised below.

Table 5 - Allowable Rainsmart system overflow rate

SURFACE DESCRIPTION	RUNOFF RATE (L/s)	
North catchment post- development runoff rate	19.94L/s	
Unattenuated runoff from the south catchment	7.12L/s	
Sub-total	27.1L/s	
Allowable post development rate	28.0L/s	
ALLOWABLE RAINSMART OVERFLOW RATE	0.9L/s	

6.3.3 Rainsmart system sizing

The permeability test results contained in Appendix C shows that for location PT-02 the average observed infiltration rate for test 3 was 1,505L/m² hr. On this basis a design infiltration rate of 375mm/hr has been used which is 25% of the observed rate.

As provided in Table 5, the allowable overflow rate from the Rainsmart system during the 1 in 100-year event is 0.9L/s. The Rainsmart system will receive runoff from a total of 85m² of garden areas, and 815m² of paved areas.

6.4 Stormwater Treatment

The sumps within the access lane will be fitted with gross pollutant screens to capture debris larger than the aperture of the screens. It is proposed to fit a Hynds First Defense vortex separator just upstream of the point of discharge to the Rainsmart system. A 2-year, 1 hour design storm will be used as the basis for sizing the treatment device.

6.5 Flood Assessment

The floor levels of the units fronting Aberdeen Road have been set to be at least 150mm above the road centreline level of RL 6.60m, and the floor levels of the remaining units will be at least 500mm above the flood level of RL 5.839m (from the Gisborne District Council 'rain on grid' GIS layer).

The site is not in any flood overlay areas, but a ponding area has been identified to the south of the site, as shown in Figure 3.

The proposed preliminary finished floor levels in terms of New Zealand Vertical Datum 2016 are as tabled below.

FINISHED FLOOR LEVEL	
RL 7.10m	
RL 7.10m	
RL 6.75m	
RL 7.00m	
RL 7.15m	
RL 7.10m	
RL 7.10m	

The floor levels of the units fronting Aberdeen Road have been set to be at least 150mm above the road centreline level of RL 6.60m, and the floor levels of the remaining units will be at least 500mm above the flood level of RL 5.839m (from the Gisborne District Council 'rain on grid' GIS layer).

It is expected that Unit 4 will have a timber sub-floor which will be a minimum of 610mm above the building perimeter levels. Floor levels of the other units will generally be at least 150mm above surrounding ground levels. Confirmation of the finished floor levels are subject to change during detailed design.

Figure 3 - Gisborne District Council flood levels

7 Access and Parking

Part C of the Tairāwhiti Resource Management Plan gives a minimum accessway width of 5.5m for between 8 and 10 dwellings. A 4.2m wide accessway plus a 1.2m wide footpath is proposed to service the 11 dwellings that do not front Aberdeen Road. The accessway width therefore does not comply with this requirement. A dispensation is sought for this. Lot 2 shall be provided access directly from Aberdeen Road.

A total of 13 carparks are included within the development.

Part C of the Tairāwhiti Resource Management Plan gives a minimum total depth of 13.2m, for the total required width of the carpark and manoeuvring space as follows.

Table 6 - Carparks and associated turning area requirements

Parking angle	Width of space	Depth of parking space	Total Depth
90 degrees	2.8m	4.9m	13.2m

The proposed design shows a that the total width measured from the face of kerb to the edge of the shared path across the shared parking area of 13.1m. This can be addressed during detailed design.

8 Wastewater

8.1 Wastewater Proposal

It is proposed to extend a DN150 connection into the development from the DN150 in Aberdeen Road. Individual DN100 connections will extend from each dwelling unit to connect to the common private wastewater pipeline within the accessway.

The wastewater system within the site will be designed and installed in accordance with the requirements of G13/AS3.

8.2 Wastewater Design Flow Rates

The purpose of the design flow rates provided in this report is to provide a basis for the Council to access the potential impact of the development on the wastewater network.

Clause 4.3.1 of the Gisborne District Council Engineering Code of Practice provides the basis for the determination of the design flow using the method outlined in NZS4404:2010. The Gisborne District Council specifies that domestic dry weather wastewater flow is 200 litres per day per person and an equivalent population of 3.2 people per dwelling.

Table 7 - Design wastewater flows

DESIGN FLOW	Litres / day (L/day)	Litres / second (L/s)
ADWF: Average Dry Weather Flow	7,860	0.09
PDWF: Peak Dry Weather Flow (ADWF x 2.5)	19,200	0.22
PWWF: Peak Wet Weather Flow (4 X ADWF)	30,720	0.36

9 Water Supply

9.1 Water Supply Proposal

The layout within the development will ensure that domestic demand is met. It is proposed to extend a DN50 connection into the development from the DN100 water main in Aberdeen Road. A testable backflow prevention device and meter will be installed inside the boundary of the development. Individual connections to the common private water supply pipeline will be provided to each dwelling. A manifold will be installed within each dwelling lot.

The water supply system within the site will be designed and installed in accordance with the requirements of G12/AS1.

9.1.1 Water Supply Design Flow Rates

Clause 5.3.2 of the Gisborne District Council Engineering Code of Practice provides the basis for the determination of the design flow. The Gisborne District Council specifies that domestic demand is 330 litres per day per person and an equivalent population of 3.2 people per dwelling.

DESIGN FLOW	Litres / day	Litres / second
	(L/day)	(L/s)
Average consumption	12,672	0.15

9.1 Firefighting requirements

The New Zealand Fire Fighting Code of Practice SNZ PAS 4509 sets out the requirements for firefighting purposes. Fire hydrants must be provided within 135m of fire risks, such that 12.5L/s is available within 135m run distance and 25L/s is available within 270m run distance from a maximum of two fire hydrants. The two hydrants in Aberdeen Road between Asquith Street and Stanley Road satisfy these requirements.

10Power and Telecommunications

Drawings have been created to show the proposed alignments for power and telecommunication services within the site. Liaison with the relevant providers has not yet been undertaken.

Appendix A Preliminary Design Drawings

TW Property Group

Residential Development 556-560 Aberdeen Road Gisborne

SITE LOCATION PLAN (NOT TO SCALE)

FOR RESOURCE CONSENT

EARTHWORKS

- All northworks must comply with the explainments of RDS4313022 and to trasted in conventions with MDS4441.
 Budgmide training is required to confirm government desting tention pronoment construction.
 During construction, stamwards report destination of the convention of the confirmation of the convention of the convention

- SERVICES

 1. All combined on work coloridor for geocetry interest and processing coloridor floating (DICCP). When condition does between the geocetry floating of the proceedings and the subject to color interest procedure.

 2. All vote inside the processing blasting Coloridor and construction for the designed processing.

 3. All all construction for the designed coloridor and construction for the designed processing.

 4. All construction for the designed coloridor and construction for the designed coloridor and the subject to color interest coloridor and size of the designed processing.

 5. All all construction for the designed coloridor and construction and size of the designed coloridor and construction and size of the designed coloridor and the subject to coloridor and col WATER INSTRUCTABILITY

 39. All insert racingly words within the property and consistent with the property and consistent with the property and consistent with the property words with the property wounders and end only with the following with the following with the following with the following words with the properties of the consistence of the respectations and the Colour I Protocol, the proportion of the Colour I Protocol, the proportion of the Colour I Protocol, the Colour I Protocol the Colour I Protocol, the Colour I Protocol I P

FOR RESOURCE CONSENT

				NCTI2	CL BAT	TW Property Group	INFRASTRUC	TURE SOLUTIONS PROJECT MANAGEMENT PG Box 7236, Turedole 4141	1
							Pf	one; 00 650 650 Email: admin@mirnz	-
_					PROJECT	RESIDENTIAL DEVLOPMENT	BRANING TITLE	GENERAL NOTES	(INF
	000346	ø	26,67,125			556-560 ABERDEEN ROAD GISBORNE	MOCONA I S	Luc. 2000s 900c. (0000)	11
_	DESCRIPTION TO REVINDA	REVEN	DATE			GIODURNE	SE S	NA 2014 CHEST J.	HENNEY, B

FOR RESOURCE CONSENT

				Norta
0	(82)-4.	œ	36.16.2325	
PEV.	DESCRIPTION TO REVISION	REVEN	DATE	

TW PROPERTY GROUP

RESIDENTIAL DEVELOPMENT 556-560 ABERDEEN ROAD GISBORNE

TW PROPERTY GROUP

RESIDENTIAL DEVELOPMENT 556-560 ABERDEEN ROAD NAPIER INFRASTRUCTURE SOLUTIONS PROJECT MANAGEMENT
Potes 100 000000 Englishmagniting
RAMNOTE ACCESS AND PARKING

INFIR

Appendix B Calculations

JOS S. JOSES COUNTY THE PROPERTY OF ACCESS MAY SEE AND SEE AND SEE AND SEE AND SEE ACCESS OF ACCESS ACCESS

un	Greet Gerden	Prints	Access read and	Reset	Total
1		. 146		an .	130
	59	20		49	136
	135	160		225	149
40	346	- 39	2 2	86	200
	76	56		- 50	235
6	34	46		90	169
7	24.	- 61		00	List
9	- 14	- 46		49	133
- 0	- 40	46		49.	148
н	25	47		45	121
- 11	33	ACT .		40	UB
12	n			40	Lar
Secret Lene	15		595		578
PROFACE	corr	200	534	710	7674

PURCHASIN	WALE	301109000
PKPLS IN AZP 3D mine to retailed learning (prox.fre)	161	HARDS
NC PA S 15 ASP 30 HONG TO GRACIE!	116	HECS
sof supplications	4.0	33,7/1911, ballet 1
Social pavement ranel coefficient	4.9	SIAMI, belie I
Un-developed surface ranoff coefficie	42	11,7561,6661

Socied parentees ranef coefficient	4.9	IL/VNIL telde 1
Un-developed surface ranoff coefficie	4.2	11,75%, 56% 1
grees / garden arres	48	01/NS1, 966: 1
Contract of the contract of th		

UNIT	MOCH AREA (MUI)	VOLUME REQUIRED (m²)	PROPOSES TARE VOICEME (mS)	TRAS ESCHT (mil)	AMBRAGE (MPTH (HI)	DIFFCS IUS [14]	COEFFICIENT	PART (L/c	MINION SELECT	
1	45	16	2	2.4	1.2	0.000	0.62	9.6	0.99	0.0302(1)
	- 61	14	3.	24	12	0.016	062	0.6	0.66	C-ONUSS
100	129	1.0	Y	2.4	1,2	0.000	080	2.4	1.83	200000,0
. 4	66	3.0	1 1	24	1.2	6.09	066	0.9	1,97	0.1000274
5	96	3.6	3	2.4	1.2	6.00	0.03	0.9	201	915300.D
4	00	34	2	34	1.5	-8.03	643	- 20 -	5.61	o onitrie .
7	- 69	1.0	3.	24	12	0.616	053	2.5	039	0.086357
	- 40	14	3	44	1.0	U.Dt.e	0.02	3.0	CURP	0.000003
2	45	1.6	1	24	12	Oxte	002	9.6	0.99	0.000011
M	*1	10	1	24	12	0.666	0.82	0.6	0.99	0.000000
11	- 48	16	3	24	1,2	0.018	Dist	3.6	0.89	(100000)
12	45	34	3	24	12	9,000	092	0.8	0.99	CONTRACTOR I
TOTAL	786	7			1		(0.000)	MLL	11.00	SAMSOCK I.

			UNITE			DMT 2			LUIT 3			UNIT4			UNITS			UNITS			LOG T			LOUTE			WIES			LINIT DO			MALL TT			UNITED	
STORM PURMITION	MANUAL DIFTING (red)	8.891YCUV8	SECURAL SECURAL	ATCHASE VOLUME (ME)	NAME OF A	(SOME IN)	STORAGE VOLUME (W)		Apriles R (a)	STOLAGE VOLVAC (m²)	PARKET		HELIANE WELLANE WAY)	E74436		SECURALS VOLUME (Inf)	PERMIT	WILLIAMS WALLOW	STORAGE VOLUME: (vr)	PARKET	ASTME CHOMO	SUSPECT (NO.)	(m) 10146E 10140F	DSCHARGE POLIME (W ²)	MONNE MONNE	NUMERY VOLUME (NY)	ADITME F PURPHY	STORMS WELLING (VE)	AGTING AGTING	MOTOR AND THE PARTY AND THE PA	FECUNE PRIMARY STORAGE	ALMON WILLIAM Joy's	DODANGE VOLUME (M)	STORAGE WORLAND (M)	NUMBER VOLUME (N°)	NOTHER NATIONAL NATIONAL	WORLA (m)
M	26.1	. 15	14	0.1	1.2	1.4	0.8	3.5	1.5	10	2.4	0.0	1.8	2.4	0.6	1.8	2.4	0.6	1.8	13	0.4	0.9	13	44	0.9	1.3	64	0.9	1.3	0.4	69	1.3	0.4	4.9	13	0.4	4.2
- 10	212	37	3.0	- 14	12	67	14	54	1.2	3.2	4.1	1.3	2.5	A1.	3.3	14	.74	1.2	100	3.7	0.7	1.2	3.7	Q.T	1.0	1.7	47	1.0	3.7	9.7	1.0	1.7	0.7	5.0	1.7	6.7	1.0
NG .	40.0	3.0	34	65	2.3	3.8	0.5	5.7	4.4	CS.	1.7	1.1	2.2	3.7	1.7	2.6	- 57	1.5	10	2.0	13	0.9	2.0	8.2	0.5	2.0	1.1	0.9	3.4	1.1	6.9	20	1.5	4.9	70	3.7	4.0
.00	543	2.7	1.5	9.5	2.7	2.2	65	6.6	4.3	-55	4.9	54	1.5	49	5/4	1.5	49	5.4	1.5	2.7	2.3	0.5	2.7	5.2	0.5	1.3	3.5	0.5	2.7	3.5	9.5	2.7	1.2	9.5	1.7	1.2	6.5
129	71.89	1.5	ė.	-02	2.5	4.6	-68	9.0	17.4	-8.2	64	6.1	-8.4	45	6.8	43	4.5	1.8	-6.8	12	5.4	-0.8	2.5	44	-08	3.5	84	-0.6	1.5	44	0.8	2.5	4.4	-0.6	4.5	4.4	-0.1
100	100	12	141	-18	3.2	18,3	-7.6	15.5	37.8	195.0	9.4	46.1	-LLJ	7.7	32,4	-169	8.0	23.6	-31.9	3.4	183	-3.8	1.2	19.1	-T.B	8,3	18,1	-T.8	1.3	16.1	7.8	8.3	367	-7.8	4.2	38.3	77.8
729	126	S.A	261	-98.7	E.A.	26.1	-417	18.4	3945	-88.1	117	46.8	492	13.5	40.0	494	118	40.0	-31.0	6.6	35.1	-49.7	6.4	26.1	-29,1	6.4	26.5	49.7	6.4	36.1	-th.7	6.4	26.1	-11.7	6.4	263	-1137
5860	100	3.2	522	-46.5	72	10.2	44.5	18.6	309.0	-139.5	140	23.7	422	14.2	81.7	63.5	16.2	84.7	41.6	7.7	52.5	-96.5	2.7	50.8	445	33	54.8	46.5	32	92.8	-44.5	1.5	17.5	-865	7.7	52.5	-865
3680	384	1.0	1343	-56.5	91	154.5	-65.5	23.0	415.1	-395.1	164	363.5	3459	16.5	253.3	146.7	15.6	153.3	-1467	51	3945	-95.5	5.1	304.5	-95.5	9.3	104.5	45.5	3.5	304.5	-65.5	9.1	104.5	-651	9.1	104.1	-955
4150	18	8.7	1568	-347.0	9.7	155.6	-807.0	25.0	672.5	483A	13.6	3450	-1273	17.4	345.0	-227.3	12.0	0.245	-200.3	2.7	1369	-1474	1.7	155.8	-147.0	9.7	155.6	-147.0	1.7	258.A	340.6	9.3	136.0	-347.0	9,3	136.1	-547.0
9790	207	30.2	2094	-098.9	332	29940	128.5	15.9	836.7	400.3	184	7288	6982	18.7	329.6	468.0	18.7	55.5	400.1	107	2050	4355	10.2	399.8	-058.9	202	100.0	4.963	802	375.0	0965	10.7	208.0	0365	39.7	509/1	409.5
7290	213	20.5	292.3	250.8	335	251.2	-2008-	15.5	3045.7	-1688.0	150	4363	3893	15-2	406.5	-389.1	15.2	408.3	389.7	105	3615	-2508	10.5	251.3	-2968	30.5	751.5	-250.8	30.5	353.3	250.5	30.5	284.5	-2586	19.5	294.3	-2566
		0.000	MAE	0.86	C	MACK	0.96	1,000,000	MAKE	1.85		MAK	197		MAGE	200		MICE	3.01		Mile	0.96	10000	MAAX	0.86	10000	BAAN	0.89	10,770	VMX	0.99	100000	MAKE	0.00	5.14.59	MAX	0.69

107 Sport #19		
		DESCHARGE
		BARE \$40
10T1 48	Ecté	2.5
48 48	1646	63
1073	Less	2.0
107F 6 238	\$100	8,9
1075 00	6.02	0.9
1076 98	6.02	89
1677.7 69	MILE	
ICTA ATO	1006	D.S.
WT 4	tose	81
LUT NO 48	1008	
107 81 46	LEGE	83
1.07 122 46	1015	5.6
390		901

12:199 TW Propris Group 558 - 550 Aberdeen road, Glaborn

STORMWATER

Design Parameters

PARAMETER	VALUE	HEFERENCE
RCP8.5 1% AEP 10 minute rainfall intensity (com/hc)	162	HIRDs
RCP8.5 1% AEP 20 minute raints lintensity (mm/he)	116	HIRDS
Roof mooff coefficient	0.9	EL/VM1, table 1
Sealed pavement runoff coefficient	0.85	E1/VM1, table 1
Un-developed surface runoff coefficient	0.25	E1/VM1, table 1
Grace / worden great	0.2	STAMES robbe 1

PRE DEVELOPMENT RUNOFF

Time of Concerntration

nre NORTH SOUT

n mannings coefficient 0,0275 0,027

L Largeth of chunnel 19.9 88

a Average surface slope 2,5% 2,3%

T The of concentration in minutes 16.6 20.3

Use time of concernration of 10 minutes for both the north and south catchmen

Day Consideration Street

SURFACE TYPE	NOR	TH CATCHMENT		SOUTH CATCHMENT					
	A: Area (m2)	CxA	0.670	A: Area (m2)	CxA	0(1/4)			
ECOF AREAS	492	442.8	14.3		.0	0.0			
SKALED SURFACES	0	D	0.0	114	96.9	8.1			
UN-DEVELOPED	750	187.5	0.0	1916	328.75	10.6			
70741	1242	****	441	****	410.00	43.7			

POST DEVELOPMENT RUNOFF

Surface characteristics

NORTH CATCHMEN

LOT		AVEMENT AREAS TO RANSMART SYSTEM		GRASS TO RESYSTEM	TOTAL ATTEMAIATED	PAVEMENT AREAS RAINSMART SY		GARDEN / GRA RAINSMART		TOTAL UNATTENUATED	
	A: Personnel area (m²)	CKA	A: Gorden area (m²)	CXA	- 350,650	A: Povement area (m²)	CKA	A: Garden area (m²)	CKA	209793	
1	54.9	46.6	25.8	5.2	51.8	10.6	5.2	41.9	10.5	19.6	
2	9	0.0		0.0	0.0	49.7	42.3	57.5	14.4	56.6	
9	3 3	0.0	2 2	0.0	0.0	46.2	39.2	47.0	11.8	50.9	
10		0.0		0.0	0.0	46.6	39.6	24.8	5.2	45.8	
11	22.3	19.0		0.0	19.0	24.6	20.9	18.6	4.7	25.5	
12	23.6	20.1	8.3	1.7	21.7	18.9	16.1	15.8	4.2	20.3	
TOTAL	100.8	85.6	34.1	6.8	92.5	196.7	167.2	206.5	51.6	218.6	

Unattenuated surface runoff	9.8
Attenuated roof runoff	10.1
TOTAL HORTH RUNOFF	19.9
ALLOWABLE NORTH RUNGEF	14.3
EXCESS RUNOFF	5.7

SOUTH CATCHMEN

LOT	PAVEMENT AREAS TO RAINSMART SYSTEM	TO RAINSMART		GARDEN / GRASS TO RAINSMANT SYSTEM		PAVEMENT AREAS NOT TO RAINSMANT SYSTEM		GARDEN / GRASS NOT TO RAINSMART SYSTEM		TOTAL UNATTERUATED (
	A: Personnet area (m²)	CXA	A: Gorden area (m²)	C×A		A: Perement area	CXA	A: Garden area (m²)	CxA	17100000
3	69.3	58.9	38.9	7.8	66.7	35.5	30.5	98.0	24.5	95.0
4	- 1		1	0.0	0.0	42.5	36.2	149.2	37.3	79.5
3	55.7	47.4	5.9	1.2	48.3	0.0	0.0	53.8	15.9	15.9
6	44.6	37.9	6.9	1,4	39.3	0.0	0.0	27,4	6.8	6.8
7	41.2	35.0	8.3	1.7	36.7	0.0	0.0	15.4	3.9	3.9
8	45.9	99.0	5.8	1.2	40.2	0.0	0.0	12.5	3.1	3.1
ACCESS LANE	558.4	474.7	19.1	8.6	478.5	0.0	0.0	0.1	0.0	3.0
TOTAL	815.1	692.9	84,9	17.0	709.9	79.4	66.7	366.4	91.6	118.3

Unettenuated surface runoff	7,12
Excess north runoff	5.7
Sub-total	12.8
Allowable south runoff	13.7

RAINSMART SIZING

Rainsmart size	No modules (ca)	Dimensions (m
L	10	7.15
W	14	5.6
0	2	0.88
Area (m²)	- 17	40.0
Net Volume (m³)		33.5
Total number of units	280	

ATTENUATED C x A	709.9
ALLOWABLE OVERFLOW BATE	0.9

Duration (reinutes)	100	a	V(=3)	V _{r0} (m²)	V _{eter}	Relance	Overflow rate	Overflow volume for period	CK/NOTCK
minutes	mo/hr	N/sec	m*	20"	m*	m*	l/s	m³	
10	162	31.5	19.2	2.5	15.7	16.8	0.0	0.0	OK.
20	116	22.9	27.4	5.0	22.4	11.0	0.0	0.0	OK.
lab .	95.4	18.5	33.9	7.6	26.6	7.1	0.0	0.0	OK
60	58.8	13.6	48.8	15.0	33.8	-0.3	0.1	0.8	OK
120	48.8	9.6	69.3	30,0	39.3	-5.8	0.8	5.8	CK
360	26.9	5.3	114.6	90.1	24.5	9.0	0.0	0.0	CK
720	17.6	3.5	149.9	180.2	0.0	33.5	0.0	0.0	CK
1440	11.1	2.2	189.1	360.4	0.0	33.5	0.0	0.0	CK
2880	5.65	1.3	226.6	720.7	0.0	33.5	0.0	0.0	CK
4030	497		246.2	4001.4	2.0	22.6	0.0	6.0	CW.

LOT	CATCHIME	Grass/ Garden	Patia	read and feetpath	Roof	Total
1	N	58	66	100000	49	183
2	N	57	50		49	156
3	5	137	305		125	357
4	5	149	43		69	281
5	5	70	56		90	216
6	5	34	45		90	169
7	5	24	41		49	114
8	s	18	46		49	113
9	N	47	46		49	142
10	N	25	47		49	121
11	N	19	47		49	115
12	N	25	43		49	113
Access Lanc	5	19		558		578
TOTAL		692	633	558	788	2671

JOB #: J22189

CLIENT: TW Proprty Group

ADDRESS: 556 - 560 Aberdeen road, Gisborne

DATE: 10.10.2023

WASTEWATER

Equivalent Population

EP per unit	Number	EP
3.2	12	38.4

Design Flow Rates

200 Litres per day per person

DESIGN FLOW	PEAKING FACTOR	L/day	L/s
Average dry weather flow	1	7680	0.09
Peak Dry Weather Flow	2.5	19200	0.22
Peak Wet Weather Flow	4	30720	0.36

JOB #: J22189

CLIENT: TW Proprty Group

ADDRESS: 556 - 560 Aberdeen road, Gisborne

DATE: 10.10.2023

WATER SUPPLY

Equivalent Population

EP per unit	Number	EP
3.2	12	38.4

Design Flow Rates

330 Litres per day per person

DESIGN FLOW	IGN FLOW PEAKING FACTOR		L/s
Average consuption	1	12672	0.15

Appendix C Infiltration Test

SAND, with trace silt; light brown. Moist to wet; sand, fine to

coarse. 1.5m: Wet.

Hole Depth: 1.60m

Termination: Target soil moisture content

Materials described in general accordance with NZGS Field Description of Soil and Rock (2005). No correlation is implied between shear vane and DCP values.

PT-01

29/06/2023

Depth (m)

1.0

24477

1 of 1

RB

Holocene Beach

Deposits

Test Name:	PT-01	Test hole Diameter:	0.1	Base Area (B):	0.008
Test Date:	July 29th 2023	Test hole Depth:	1.5	Circumfrence (C):	0.314
Level Loggger #:	2128031	Level Logger Depth:	1.05	Test One: 12:22:1	0 Test Two:

		time	steps	Depth	Steps	Volume Soaked	Soakage Surface Area	Soaka	ge Rate
Level	Time	t0	ti	h0	h1	V=(h0-h1)*B	A=(C*(h0+h1)/2)+B	SR=V/A/(t1- t0)	SR*60*60* 1000
	hh:mm:ss		3	n	n	m³	m ²	m ³ m ⁻² s ⁻¹	Lm ⁻² h ⁻¹

0.874006 12:22:20 10 15 0.962 0.874 6.92E-04 0.279 1.36E-04 0.849949 12:22:25 15 20 0.874 0.850 1.89E-04 0.279 1.36E-04 0.80689 12:22:30 20 25 0.850 0.828 1.71E-04 0.271 1.26E-04 0.80689 12:22:35 30 0.828 0.805 1.85E-04 0.264 1.40E-04 0.784811 12:22:40 30 35 0.805 0.786 1.47E-04 0.251 1.17E-04 0.7486055 12:22:45 35 40 0.786 0.749 1.37E-04 0.251 1.17E-04 0.748624 12:23:00 50 55 0.766 0.749 1.37E-04 0.246 1.11E-04 0.71521 12:22:255 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.75586 12:23:10 60 65 0.701 1.14E-04 0.220 9.87E-05	718 1681 4488 4452 504 436 422 401 3398 337 3355 3323 3321 3321 321 321 292 267 268 276 240
1.002243 12:22:10 0 5	718 1681 488 452 504 436 422 401 398 387 355 362 323 334 321 302 301 292 267 268 278 276 240
0.96208 12:22:15 5 10 1.002 0.982 3.15E-04 0.316 1.99E-04 0.874006 12:22:20 10 15 0.982 0.874 0.896 4.97E-04 0.296 4.87E-04 0.89949 12:22:25 15 20 0.874 0.880 1.89E-04 0.279 1.36E-04 0.828236 12:22:30 20 25 0.850 0.828 1.71E-04 0.271 1.28E-04 1.40E-04 0.8248236 12:22:30 20 35 0.805 0.808 1.89E-04 0.224 1.22E-04 0.786825 12:22:40 30 35 0.805 0.786 1.89E-04 0.288 1.21E-04 0.7868055 12:22:45 35 40 0.785 0.766 0.786 1.59E-04 0.251 1.17E-04 0.786055 12:22:255 45 50 0.786 0.786 0.786 1.37E-04 0.246 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.701121 12:23:05 55 60 0.716 0.701 1.4E-04 0.235 1.08E-04 0.701121 12:23:05 55 60 0.716 0.701 1.4E-04 0.230 9.87E-05 0.68464 12:23:10 60 65 0.701 0.687 1.14E-04 0.220 9.87E-05 0.684064 12:23:20 70 75 0.687 0.687 1.14E-04 0.226 1.01E-04 0.681082 12:23:20 70 75 0.687 0.687 0.687 1.14E-04 0.228 1.08E-05 0.68162 12:23:20 70 75 0.684 0.661 1.01E-04 0.218 9.27E-05 0.694069 12:23:35 85 90 0.637 0.664 0.661 1.01E-04 0.218 9.27E-05 0.694063 12:23:35 85 90 0.637 0.666 0.661 0.695 0.206 8.38E-05 0.214 9.92E-05 0.696084 12:23:45 95 100 0.615 0.605 0.696 0.7205 0.020 8.38E-05 0.206 8.38E-05 0.69609 12:23:45 95 100 0.615 0.605 0.696 0.7205 0.020 8.38E-05 0.595719 12:23:54 95 100 0.615 0.605 0.5967 7.29E-05 0.200 8.38E-05 0.595719 12:23:45 95 100 0.615 0.605 0.596 0.7205 0.020 8.38E-05 0.595719 12:23:45 95 100 0.615 0.605 0.596 0.7205 0.196 7.42E-05 0.596719 12:23:55 105 110 0.596 0.595 0.5957 0.506 0.214 9.92E-05 0.596719 12:23:45 95 100 0.615 0.605 0.596 0.7205 0.196 7.42E-05 0.196 7.42E-05 0.596719 12:23:50 100 105 0.505 0.596 0.5967 0.200 8.38E-05 0.596719 12:23:45 95 100 0.615 0.5967 0.5967 0.506 0.196 0.742E-05 0.196 0.742E-05 0.596719 12:23:50 100 105 0.505 0.596 0.596 0.596 0.196 0.196 0.742E-05 0.596719 12:23:50 100 105 0.505 0.596 0.596 0.596 0.196 0.196 0.742E-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.196 0.596-05 0.1	718 1681 488 452 504 436 422 401 398 387 355 362 323 334 321 302 301 292 267 268 278 276 240
0.874006 12:22:20 10 15 0.962 0.874 6.92E-04 0.279 1.36E-04 0.849999 12:22:23 20 25 0.860 0.828 1.71E-04 0.271 1.26E-04 0.804689 12:22:35 25 30 0.828 0.805 1.85E-04 0.264 1.40E-04 0.784811 12:22:40 30 35 0.805 0.786 1.45E-04 0.258 1.21E-04 0.7866055 12:22:45 35 40 0.786 0.749 1.37E-04 0.251 1.17E-04 0.748624 12:22:55 45 50 0.749 1.37E-04 0.246 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.75986 12:23:05 55 0.0732 0.716 1.28E-04 0.235 1.08E-04 0.7121 12:23:05 55 0.0712 1.4E-04 0.230 9.87E-05 0.68406 <	1681 488 4452 504 436 422 401 398 387 355 362 323 334 321 302 301 292 267 268 278 278 276 240
0.849949 12:22:25 15 20 0.874 0.850 1.89E-04 0.279 1.36E-04 0.804889 12:22:35 25 0.828 0.805 1.89E-04 0.264 1.40E-04 0.768055 25 30 0.828 0.805 1.89E-04 0.264 1.40E-04 0.768055 35 40 0.786 1.76E-04 0.258 1.21E-04 0.768055 35 40 0.786 1.76E-04 0.258 1.21E-04 0.731702 12:22:55 45 50 0.766 0.74P 1.37E-04 0.246 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.246 1.11E-04 0.701121 12:23:05 55 60 0.732 0.716 1.28E-04 0.235 1.08E-04 0.70121 12:23:05 55 60 0.701 1.4E-04 0.236 1.01E-04 0.674006 12:23:15 65 70 0.687	488 452 504 436 4422 401 398 387 355 362 323 334 321 321 321 321 321 327 268 276 240
0.828236 12:22:30 20 25 0.850 0.828 1.71E-04 0.264 1.26E-04 0.804889 12:22:35 25 30 0.828 0.805 1.85E-04 0.264 1.40E-04 0.784811 12:22:45 35 40 0.786 0.749 1.37E-04 0.251 1.17E-04 0.748624 12:22:55 45 50 0.766 1.749 1.37E-04 0.240 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.75596 12:23:00 50 55 0.732 0.716 1.28E-04 0.235 1.08E-04 0.70121 12:23:05 55 60 0.716 0.701 1.14E-04 0.230 9.87E-05 0.886646 12:23:10 60 65 0.701 0.687 0.674 9.83E-05 0.222 8.96E-05 0.641162 12:23:25 75 80 0.681 0.649 9.95E-05	452 504 436 4422 401 398 387 355 362 323 334 321 321 321 321 322 301 292 267 268 278 276 240
0.806899 12:22:235 25 30 0.828 0.805 1.85E-04 0.264 1.40E-04 0.764085 12:22:45 35 40 0.786 0.786 1.47E-04 0.258 1.21E-04 0.766085 12:22:45 35 40 0.786 0.786 0.786 1.47E-04 0.251 1.17E-04 0.7480824 12:22:50 40 45 0.766 0.749 1.37E-04 0.246 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.246 1.11E-04 0.715596 12:23:00 50 55 0.732 0.716 1.26E-04 0.235 1.08E-04 0.701121 12:23:05 55 60 0.716 0.701 1.14E-04 0.230 9.87E-05 0.686648 12:23:10 60 65 0.701 0.687 0.674 0.687 0.674006 12:23:15 65 70 0.687 0.674 0.681 1.01E-04 0.220 9.87E-05 0.674006 12:23:15 65 70 0.687 0.674 0.681 1.01E-04 0.220 9.87E-05 0.68162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.68162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.6837105 12:23:30 80 85 0.689 0.637 0.661 0.694 9.53E-05 0.221 8.98E-05 0.616208 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:40 90 95 0.626 0.615 8.49E-05 0.203 8.37E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586504 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.586504 12:24:25 135 140 0.543 0.556 0.520 0.196 7.42E-05 0.586504 12:24:25 135 140 0.543 0.556 0.550 0.196 0.177 0.88E-05 0.586504 12:24:25 135 140 0.543 0.556 0.550 0.196 0.197 7.33E-05 0.586804 12:24:25 135 145 150 0.577 0.568 0.560 0.560 0.105 0.105 0.666 0.66E-05 0.196 0.177 0.88E-05 0.586504 12:24:25 135 140 0.543 0.556 0.550 0.196 0.177 0.68E-05 0.588E-05 0.196 0.177 0.588E-05 0.196 0.589504 12:24:25 135 145 150 0.577 0.568 0.560 0.551 7.13E-05 0.182 7.81E-05 0.588E-05 0.159 0.159 0.52E-05 0.168 0.22E-05 0.175 7.33E-05 0.5198 0.22E-05 0.175 7.33E-05 0.5198 0.22E-05 0.175 7.33E-05 0.5198 0.22E-05 0.175 7.33E-05 0.519	504 436 422 4401 398 387 355 362 323 334 321 321 321 302 267 268 278 278 276 240
0.7848111 12:22:240 30 35 0.805 0.785 1.56E-04 0.288 1.21E-04 0.766055 12:22:45 35 40 0.785 0.766 1.47E-04 0.251 1.17E-04 0.746624 12:22:55 40 45 0.786 0.749 1.37E-04 0.240 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.75598 12:23:05 55 60 0.716 0.266 0.225 1.08E-04 0.67409 12:23:10 60 65 0.701 0.687 0.716 0.222 8.9E-05 0.68162 12:23:20 70 75 0.687 0.674 9.93E-05 0.222 8.9E-05 0.68102 12:23:30 80 85 0.649 0.837 0.214 8.92E-05 0.637105 12:23:35 85 90 0.637 0.575 0.20 8.38E-05 0.6492096	436 422 401 398 387 355 362 323 334 321 302 301 292 267 268 278 276 240
0.786055 12:22:45 35 40 0.786 0.786 1.47E-04 0.251 1.17E-04 0.748624 12:22:50 40 45 0.786 0.749 1.37E-04 0.246 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.715596 12:23:05 55 56 0.732 0.716 1.26E-04 0.230 9.87E-05 0.88646 12:23:10 60 65 0.716 0.701 1.14E-04 0.230 9.87E-05 0.88646 12:23:10 60 65 0.701 0.687 1.14E-04 0.226 1.01E-04 0.674006 12:23:15 65 70 0.687 0.674 0.681 1.01E-04 0.228 8.96E-05 0.661162 12:23:25 75 80 0.661 0.649 9.53E-05 0.222 8.96E-05 0.64162 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92E-05 0.837105 12:23:35 85 90 0.637 0.626 8.65E-05 0.210 8.93E-05 0.210 8.93E-05 0.210 8.93E-05 0.615291 12:23:40 90 95 0.626 0.615 8.49E-05 0.200 8.38E-05 0.69995 12:23:40 90 95 0.626 0.615 8.49E-05 0.200 8.39E-05 0.5995719 12:23:55 105 110 0.596 0.596 7.29E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.596 7.29E-05 0.196 7.42E-05 0.58795 12:24:05 115 120 0.577 0.568 7.21E-05 0.194 7.45E-05 0.54043 12:24:10 120 125 0.566 0.550 6.61E-05 0.196 7.42E-05 0.560143 12:24:10 120 125 0.566 0.550 6.61E-05 0.196 7.42E-05 0.54043 12:24:10 120 125 0.566 0.550 6.61E-05 0.196 7.42E-05 0.54043 12:24:10 120 125 0.566 0.550 6.61E-05 0.196 7.42E-05 0.54043 12:24:10 120 125 0.566 0.560 6.61E-05 0.196 7.42E-05 0.54043 12:24:10 120 125 0.566 0.560 6.61E-05 0.196 7.42E-05 0.54043 12:24:25 135 140 0.543 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:25 135 140 0.543 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:25 135 140 0.543 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:25 135 140 0.543 0.551 7.13E-05 0.182 7.81E-05 0.511519 12:24:45 155 160 0.512 0.556 0.560 0.60E-05 0.175 7.33E-05 0.182 7.81E-05 0.542813 12:24:25 135 145 150 0.527 0.519 0.519 0.512 0.506 0.196 0.175 7.33E-05 0.182 7.81E-05 0.542813 12:24:25 135 145 150 0.552 0.560 0.560 0.60E-05 0.175 7.33E-05 0.182 7.81E-05 0.511519 12:24:25 135 145 150 0.551 0.549 0.551 7.13E-05 0.185 0.185 0.560 0.166 0.165 0.550 0.498 0.491 0.5440 0.165 0.555 0.59E-05 0.166 0.166 0.167 7.45E-05 0.49965 12:24:50 160 165 0.505 0.498 0.491 0.5450 0.165 0.166 0.165	422 401 398 387 355 362 323 334 321 302 301 292 267 268 276 240
0.748624 12:22:50 40 45 0.766 0.749 1.37E-04 0.246 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.235 1.08E-04 0.715596 12:23:00 50 55 0.732 0.716 1.26E-04 0.235 1.08E-04 0.701121 12:23:05 55 60 0.716 0.701 1.14E-04 0.230 9.87E-05 0.886846 12:23:10 60 65 0.701 0.687 1.14E-04 0.230 9.87E-05 0.686846 12:23:15 65 70 0.687 0.674 9.33E-05 0.222 8.96E-05 0.6744 0.67440 0.230 9.87E-05 0.68162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.68162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.637105 12:23:30 80 85 0.649 9.53E-05 0.214 8.92E-05 0.637105 12:23:30 80 85 0.649 0.637 9.37E-05 0.210 8.93E-05 0.6162096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.616291 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.37E-05 0.595719 12:23:50 100 105 0.605 0.596 7.29E-05 0.200 8.10E-05 0.595719 12:23:50 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.587644 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.194 7.45E-05 0.560143 12:24:10 120 1.25 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.580 0.551 7.13E-05 0.182 7.81E-05 0.580143 12:24:20 130 136 0.551 0.5510 0.543 6.48E-05 0.182 7.81E-05 0.580143 12:24:25 135 140 0.543 0.553 6.08E-05 0.182 7.81E-05 0.580143 12:24:25 135 140 0.543 0.553 6.08E-05 0.176 0.182 7.81E-05 0.59681 12:24:35 145 150 0.597 0.519 0.512 5.76E-05 0.186 7.22E-05 0.51151 12:24:30 140 145 0.536 0.551 7.13E-05 0.182 7.81E-05 0.59693 12:24:45 155 160 0.597 0.599 0.599 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.190 0.190 0.590 0.590 0.590 0.590 0.590 0.190 0.590 0.	401 398 387 355 362 3323 3334 321 321 302 301 292 267 268 278 276 240
0.731702 12:22:55 45 50 0.749 0.732 1.33E-04 0.240 1.11E-04 0.715596 12:23:00 50 55 0.732 0.716 1.26E-04 0.235 1.08E-04 0.701121 12:23:05 55 60 0.716 0.701 1.14E-04 0.230 9.87E-05 0.686646 12:23:10 60 65 0.701 0.687 1.14E-04 0.226 1.01E-04 0.674006 12:23:15 65 70 0.687 0.674 9.63E-05 0.222 8.96E-05 0.661162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.649032 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92E-05 0.626096 12:23:35 85 90 0.637 0.626 0.65162 8.65E-05 0.206 8.33E-05 0.626096 12:23:35 85 90 0.637 0.626 0.6516 8.49E-05 0.203 8.37E-05 0.615291 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:55 105 110 0.565 0.596 7.29E-05 0.196 7.42E-05 0.587664 12:24:00 110 115 0.587 0.577 0.568 7.29E-05 0.194 7.45E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.66E-05 0.55177 12:24:15 125 130 0.550 0.551 7.13E-05 0.182 7.81E-05 0.55103 12:23:20 140 140 145 0.557 0.568 0.550 0.616 0.665 0.550 0.5511 12:24:15 125 130 0.550 0.551 7.13E-05 0.182 7.81E-05 0.55103 12:24:15 125 130 0.550 0.551 7.13E-05 0.182 7.81E-05 0.55103 12:24:25 135 140 0.551 0.543 6.48E-05 0.182 7.81E-05 0.58858 12:24:25 135 140 0.543 0.531 0.543 6.48E-05 0.182 7.81E-05 0.51885 12:24:25 135 140 0.543 0.531 0.543 6.48E-05 0.177 6.68E-05 0.51885 12:24:25 135 140 0.543 0.531 6.48E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.48E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.87E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.177 6.687E-05 0.51885 12:24:25 135 140 0.543 0.531 6.08E-05 0.170 6.79E-05 0.48585 12:24:55 155 160 0.515 0.519 0.519 0.519 0.510 0.5168 6.25E-05 0.170 6.79E-05 0.485803 12:25:05 170 0.498 0.491 0.44	398 387 355 362 323 334 321 321 302 301 292 267 268 278 276 240
0.715596 12:23:00 50 55 0.732 0.716 1.28E-04 0.235 1.08E-04 0.701121 12:23:05 55 60 0.716 0.701 1.14E-04 0.230 9.87E-05 0.868646 12:23:10 60 65 0.701 0.687 1.14E-04 0.226 1.101E-04 0.674006 12:23:15 65 70 0.687 0.674 9.83E-05 0.222 8.96E-05 0.661162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.649032 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92Z-05 0.637105 12:23:30 80 85 0.649 0.637 9.37E-05 0.210 8.93E-05 0.6152 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.33E-05 0.61529 1 12:23:40 90 95 0.626 0.616 8.49E-05 0.200 8.37E-05 0.004995 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.586544 12:23:55 105 110 0.596 0.587 7.29E-05 0.194 7.45E-05 0.577166 12:24:00 110 115 0.597 0.577 7.37E-05 0.194 7.45E-05 0.560143 12:24:10 120 125 0.568 0.560 0.560 6.16E-05 0.188 7.68E-05 0.560143 12:24:10 120 125 0.568 0.560 0.560 6.16E-05 0.188 7.68E-05 0.55107 12:24:15 125 130 0.560 0.551 0.551 0.543 6.48E-05 0.185 6.66E-05 0.560143 12:24:20 120 125 0.568 0.560 0.551 7.13E-05 0.185 6.66E-05 0.5526911 12:23:25 135 140 0.596 0.551 7.13E-05 0.185 6.66E-05 0.5526911 12:24:25 135 140 0.543 0.551 0.551 0.543 6.48E-05 0.185 7.23E-05 0.185 0.526911 12:24:25 135 140 0.543 0.550 0.551 0.510 0.177 0.568 6.26E-05 0.185 0.66E-05 0.5526911 12:24:25 135 140 0.543 0.550 0.551 7.13E-05 0.185 0.66E-05 0.5526911 12:24:25 135 140 0.543 0.550 0.551 0.510 0.177 0.678E-05 0.177 0.577 7.33E-05 0.185 0.66E-05 0.5526911 12:24:25 135 140 0.543 0.550 0.551 0.510 0.177 0.679E-05 0.186 6.21E-05 0.56861 12:24:25 135 140 0.543 0.550 0.551 0.510 0.510 0.511519 12:24:25 135 140 0.543 0.550 0.551 0.510	387 355 362 323 334 321 321 302 301 302 292 267 268 278 276 240
0.701121 12:23:05 55 60 0.716 0.701 1.14E-04 0.230 9.87E-05 0.88646 12:23:10 60 65 0.701 0.887 1.14E-04 0.226 1.01E-04 0.674006 12:23:15 65 70 0.687 0.674 9.93E-05 0.222 8.96E-05 0.661162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.661162 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92E-05 0.637105 12:23:30 80 85 0.649 9.637 9.37E-05 0.210 8.93E-05 0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.626096 12:23:40 90 95 0.626 0.615 8.49E-05 0.203 8.37E-05 0.695096 12:23:55 100 0.615 0.605 8.09E-05 0.200 8.38E-05 0.695091 12:23:55 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.57766 12:24:05 115 120 0.577 0.568 7.21E-05 0.194 7.35E-05 0.566043 12:24:10 120 125 0.566 0.560 6.16E-05 0.194 7.3E-05 0.560143 12:24:10 120 125 0.568 0.560 6.16E-05 0.188 7.68E-05 0.53606 12:24:25 135 140 0.543 0.550 0.551 7.13E-05 0.182 7.81E-05 0.536066 12:24:25 135 140 0.543 0.550 0.551 7.13E-05 0.182 7.81E-05 0.536066 12:24:25 135 140 0.543 0.535 0.60E-05 0.180 7.22E-05 0.5168 12:24:30 140 145 0.535 0.527 6.40E-05 0.177 6.67E-05 0.5188 12:24:30 140 145 0.535 0.527 6.40E-05 0.177 6.67E-05 0.5119 12:24:30 140 145 0.535 0.527 6.40E-05 0.182 7.81E-05 0.5119 12:24:30 140 145 0.535 0.527 6.40E-05 0.180 7.22E-05 0.5189 12:24:25 135 140 0.543 0.535 0.60E-05 0.177 6.67E-05 0.511519 12:24:40 150 155 0.519 0.512 0.506 0.527 0.519 6.32E-05 0.177 6.67E-05 0.511519 12:24:55 165 170 0.498 0.491 0.543 0.535 0.05E-05 0.170 6.79E-05 0.511519 12:24:55 165 170 0.498 0.491 0.543 0.498 0.491 0.50E-05 0.168 6.21E-05 0.4983 12:24:25 185 140 0.543 0.535 0.527 6.40E-05 0.175 7.33E-05 0.511519 12:24:40 150 155 0.519 0.512 0.506 0.498 0.491 0.49	355 362 323 334 321 321 302 301 292 267 268 278 276 240
0.686646 12:23:10 60 65 0.701 0.687 1.14E-04 0.226 1.01E-04 0.674006 12:23:15 65 70 0.687 0.674 9.83E-05 0.222 8.96E-05 0.681162 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92E-05 0.637105 12:23:30 80 85 0.649 0.637 9.37E-05 0.210 8.93E-05 0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:40 90 95 0.626 0.615 8.49E-05 0.203 8.37E-05 0.615291 12:23:45 95 100 0.615 0.605 8.09E-05 0.203 8.37E-05 0.615291 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.5805419 12:23:55 105 110 0.560 0.587 7.21E-05 <t< th=""><th>362 323 334 321 321 302 301 292 267 268 278 276 240</th></t<>	362 323 334 321 321 302 301 292 267 268 278 276 240
0.674006 12:23:15 65 70 0.687 0.674 9.93E-05 0.222 8.96E-05 0.661162 12:23:25 75 80 0.661 1.01E-04 0.218 9.27E-05 0.649032 12:23:30 80 85 0.649 0.637 0.53E-05 0.214 8.92E-05 0.63705 12:23:30 80 85 0.649 0.637 9.37E-05 0.210 8.93E-05 0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:45 95 100 0.615 0.605 0.906 0.203 8.37E-05 0.604995 12:23:45 95 100 0.615 0.605 0.906 0.203 8.37E-05 0.596719 12:23:50 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.597166 12:24:00 110 115 0.596 0.597 0.191 7.73E-05 0.19	323 334 321 321 302 301 292 267 268 278 276 240
0.661162 12:23:20 70 75 0.674 0.661 1.01E-04 0.218 9.27E-05 0.649032 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92E-05 0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:40 90 95 0.626 0.616 8.49E-05 0.203 8.37E-05 0.604895 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.196 7.42E-05 0.567766 12:24:00 110 115 0.587 7.37E-05 0.191 7.73E-05 0.560743 12:24:10 120 125 0.566 0.560 0.560 0.185 <	334 321 321 302 301 292 267 268 278 276 240
0.649032 12:23:25 75 80 0.661 0.649 9.53E-05 0.214 8.92E-05 0.637105 12:23:30 80 85 0.649 9.53E-05 0.210 8.93E-05 0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:40 90 95 0.626 0.615 8.49E-05 0.203 8.37E-05 0.604995 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:55 105 110 0.596 0.587 7.29E-05 0.196 7.42E-05 0.577166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.5607932 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.55107 12:24:15 120 125 0.568 0.560 0.550 0.185 <	321 321 302 301 292 267 268 278 276 240
0.637105 12:23:30 80 85 0.649 0.637 9.37E-05 0.210 8.93E-05 0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.604995 12:23:45 95 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.595719 12:23:50 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.5877166 12:24:00 110 115 0.587 7.37E-05 0.191 7.73E-05 0.587992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.580143 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:15 125 130 0.560 0.551 7.13E-05	321 302 301 292 267 268 278 276 240
0.626096 12:23:35 85 90 0.637 0.626 8.65E-05 0.206 8.38E-05 0.615291 12:23:40 90 95 0.626 0.615 8.49E-05 0.203 8.37E-05 0.604995 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:50 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.5777166 12:24:00 110 115 0.597 0.568 7.21E-05 0.191 7.73E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.58107 12:24:15 120 125 0.566 0.560 0.561 0.16E-05 0.182 7.81E-05 0.52107 12:24:15 125 130 0.560 0.551	302 301 292 267 268 278 276 240
0.615291 12:23:40 90 95 0.626 0.615 8.49E-05 0.203 8.37E-05 0.604995 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:55 105 110 0.596 7.29E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.577166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.55107 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.542813 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.526911 12:24:25 135 140 0.543 0.535 6.08E-05 0.177	301 292 267 268 278 276 240
0.604995 12:23:45 95 100 0.615 0.605 8.09E-05 0.200 8.10E-05 0.595719 12:23:50 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.577166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.587992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.580143 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.518858 12:24:30 140 145 0.552 0.519 0.512	292 267 268 278 276 240
0.595719 12:23:50 100 105 0.605 0.596 7.29E-05 0.196 7.42E-05 0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.5777166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.560143 12:24:10 120 125 0.568 0.560 0.551 7.13E-05 0.182 7.81E-05 0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.588883 12:24:23 140 145 0.527 0.519	267 268 278 276 240
0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.577166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.560143 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.511519 12:24:35 145 150 0.527 0.519 6.32E-05 <th>268 278 276 240</th>	268 278 276 240
0.586544 12:23:55 105 110 0.596 0.587 7.21E-05 0.194 7.45E-05 0.577166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.560143 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.511519 12:24:35 145 150 0.527 0.519 6.32E-05 <th>278 276 240</th>	278 276 240
0.577166 12:24:00 110 115 0.587 0.577 7.37E-05 0.191 7.73E-05 0.587992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.580143 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.5118519 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.35E-05 0.511519 12:24:40 150 155 0.519 0.512 0.505	276 240
0.567992 12:24:05 115 120 0.577 0.568 7.21E-05 0.188 7.68E-05 0.560143 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.518858 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.35E-05 0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 <th>276 240</th>	276 240
0.580143 12:24:10 120 125 0.568 0.560 6.16E-05 0.185 6.66E-05 0.55107 12:24:15 125 130 0.580 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.529911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.518858 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.35E-05 0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 <th></th>	
0.55107 12:24:15 125 130 0.560 0.551 7.13E-05 0.182 7.81E-05 0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.518858 12:24:35 145 150 0.527 0.519 0.512 0.76E-05 0.172 7.33E-05 0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.168 6.21E-05 0.491233 12:24:55 165 170 0.498 0.491	
0.542813 12:24:20 130 135 0.551 0.543 6.48E-05 0.180 7.22E-05 0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.518858 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.35E-05 0.511519 12:24:40 150 155 0.519 0.512 0.505 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.168 6.21E-05 0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.487588 12:25:00 170 175 0.491 0.484 6.00E-05	281
0.535066 12:24:25 135 140 0.543 0.535 6.08E-05 0.177 6.87E-05 0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.518858 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.36E-05 0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.168 6.28E-05 0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 <th>260</th>	260
0.526911 12:24:30 140 145 0.535 0.527 6.40E-05 0.175 7.33E-05 0.518858 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.35E-05 0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.165 6.88E-06 0.491655 12:24:55 165 170 0.498 6.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.25E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 <th>247</th>	247
0.518858 12:24:35 145 150 0.527 0.519 6.32E-05 0.172 7.35E-05 0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.165 6.88E-05 0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.25E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.458647 12:25:20 190 195 0.466 0.460 4.48E-05 <th>264</th>	264
0.511519 12:24:40 150 155 0.519 0.512 5.76E-05 0.170 6.79E-05 0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.165 6.88E-05 0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.25E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.4593939 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.480 0.453 5.28E-05 <th>265</th>	265
0.504893 12:24:45 155 160 0.512 0.505 5.20E-05 0.168 6.21E-05 0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.166 6.88E-05 0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.48E-05 0.477288 12:25:05 175 180 0.484 0.477 0.472 0.46E-05 0.159 6.28E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.458647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.4539393 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.453 5.28E-05 <th>245</th>	245
0.497655 12:24:50 160 165 0.505 0.498 5.68E-05 0.165 6.88E-05 0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.25E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.45647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.459393 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.88E-05 0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05	224
0.491233 12:24:55 165 170 0.498 0.491 5.04E-05 0.163 6.18E-05 0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.26E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.456647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.4593939 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	248
0.483588 12:25:00 170 175 0.491 0.484 6.00E-05 0.161 7.46E-05 0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.25E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.456647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.4593939 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	223
0.477268 12:25:05 175 180 0.484 0.477 4.96E-05 0.159 6.25E-05 0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.458647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.459393 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	269
0.47156 12:25:10 180 185 0.477 0.472 4.48E-05 0.157 5.72E-05 0.465647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.459939 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	225
0.465647 12:25:15 185 190 0.472 0.466 4.64E-05 0.155 5.99E-05 0.459939 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	206
0.459939 12:25:20 190 195 0.466 0.460 4.48E-05 0.153 5.85E-05 0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	216
0.453211 12:25:25 195 200 0.460 0.453 5.28E-05 0.151 6.99E-05 0.446687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	211
0.44687 12:25:30 200 205 0.453 0.447 5.12E-05 0.149 6.87E-05	251
	247
Hearton 17 (2) 205 200 Hear Hear Hear 11 (4) 15 (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	203
0.43629 12:25:40 210 215 0.441 0.436 4.00E-05 0.146 5.49E-05	198
0.430581 12:25:45 215 220 0.436 0.431 4.48E-05 0.144 6.23E-05	224
0.425688 12:25:50 220 225 0.431 0.426 3.84E-05 0.142 5.40E-05	194
0.420591 12:25:55 225 230 0.426 0.421 4.00E-05 0.141 5.69E-05	205
	228
0.410499 12:26:05 235 240 0.415 0.410 3.52E-05 0.138 5.12E-05	184
0.405097 12:26:10 240 245 0.410 0.405 4.24E-05 0.136 6.24E-05	225
0.400714 12:26:15 245 250 0.405 0.401 3.44E-05 0.134 5.12E-05	184
0.395617 12:26:20 250 255 0.401 0.396 4.00E-05 0.133 6.02E-05	217
0.391437 12:26:25 255 260 0.396 0.391 3.28E-05 0.131 4.99E-05	180
	204
	206
	204
	206
	195
	192
0.360143 12:27:00 290 295 0.364 0.360 3.36E-05 0.122 5.53E-05	
	100
	199
	177
	177 213
	177 213 191
	177 213 191 188
0.336493 12:27:30 320 325 0.340 0.336 2.88E-05 0.114 5.05E-05	177 213 191 188 190
	177 213 191 188 190 182
0.329052 12:27:40 330 335 0.333 0.329 2.88E-05 0.112 5.10E-05	177 213 191 188 190

0.325382	12:27:45	335	340	0.329	0.325	2.88E-05	0.111	5.21E-05	188
0.321916	12:27:50	340	345	0.325	0.322	2.72E-05	0.110	4.97E-05	179
0.318756	12:27:55	345	350	0.322	0.319	2.48E-05	0.108	4.58E-05	165
0.315698	12:28:00	350	355	0.319	0.316	2.40E-05	0.108	4.47E-05	161
0.31213	12:28:05	355	360	0.316	0.312	2.80E-05	0.106	5.26E-05	189
0.309072	12:28:10	360	365	0.312	0.309	2.40E-05	0.105	4.56E-05	164
0.305505	12:28:15	365	370	0.309	0.306	2.80E-05	0.104	5.37E-05	193
0.302141	12:28:20	370	375	0.306	0.302	2.64E-05	0.103	5.12E-05	184
0.299083	12:28:25	375	380	0.302	0.299	2.40E-05	0.102	4.70E-05	169
		2309-07-1							
0.29633	12:28:30	380	385	0.299	0.296	2.16E-05	0.101	4.26E-05	154
0.292966	12:28:35	385	390	0.296	0.293	2.64E-05	0.100	5.26E-05	189
0.289806	12:28:40	390	395	0.293	0.290	2.48E-05	0.099	4.99E-05	180
0.286748	12:28:45	395	400	0.290	0.287	2.40E-05	0.098	4.88E-05	176
0.2842	12:28:50	400	405	0.287	0.284	2.00E-05	0.098	4.10E-05	148
0.28104	12:28:55	405	410	0.284	0.281	2.48E-05	0.097	5.14E-05	185
0.278695	12:29:00	410	415	0.281	0.279	1.84E-05	0.096	3.85E-05	138
0.275535	12:29:05	415	420	0.279	0.276	2.48E-05	0.095	5.23E-05	188
0.272987	12:29:10	420	425	0.276	0.273	2.00E-05	0.094	4.26E-05	153
0.270133	12:29:15	425	430	0.273	0.270	2.24E-05	0.093	4.81E-05	173
0.267278	12:29:20	430	435	0.270	0.267	2.24E-05	0.092	4.86E-05	175
0.264832	12:29:25	435	440	0.267	0.265	1.92E-05	0.091	4.20E-05	151
0.261672	12:29:30	440	445	0.265	0.262	2.48E-05	0.091	5.48E-05	197
0.259123	12:29:35	445	450	0.262	0.259	2.00E-05	0.090	4.46E-05	161
0.255861	12:29:40	450	455	0.259	0.256	2.56E-05	0.089	5.77E-05	208
0.252905	12:29:45	455	460	0.256	0.253	2.32E-05	0.088	5.29E-05	190
0.249745	12:29:50	460	465	0.253	0.250	2.48E-05	0.087	5.72E-05	206
0.246687	12:29:55	465	470	0.250	0.247	2.40E-05	0.086	5.60E-05	201
0.243731									
	12:30:00	470	475	0.247	0.244	2.32E-05	0.085	5.47E-05	197
0.240673	12:30:05	475	480	0.244	0.241	2.40E-05	0.084	5.72E-05	206
0.237717	12:30:10	480	485	0.241	0.238	2.32E-05	0.083	5.59E-05	201
0.235066	12:30:15	485	490	0.238	0.235	2.08E-05	0.082	5.07E-05	183
0.231906	12:30:20	490	495	0.235	0.232	2.48E-05	0.081	6.11E-05	220
0.229052	12:30:25	495	500	0.232	0.229	2.24E-05	0.080	5.59E-05	201
0.226402	12:30:30	500	505	0.229	0.226	2.08E-05	0.079	5.24E-05	189
0.223445	12:30:35	505	510	0.226	0.223	2.32E-05	0.079	5.91E-05	213
0.220795	12:30:40	510	515	0.223	0.221	2.08E-05	0.078	5.36E-05	193
0.218349	12:30:45	515	520	0.221	0.218	1.92E-05	0,077	5.00E-05	180
0.215698	12:30:50	520	525	0.218	0.216	2.08E-05	0.076	5.48E-05	197
0.212742	12:30:55	525	530	0.216	0.213	2.32E-05	0.075	6.18E-05	222
0.210194	12:31:00	530	535	0.213	0.210	2.00E-05	0.074	5.39E-05	194
0.207543	12:31:05	535	540	0.210	0.208	2.08E-05	0.073	5.67E-05	204
0.205708	12:31:10	540	545	0.208	0.206	1.44E-05	0.073	3.96E-05	143
0.202854	12:31:15	545	550	0.206	0.203	2.24E-05	0.072	6.22E-05	224
0.200204	12:31:20	550	555	0.203	0.200	2.08E-05	0.071	5.85E-05	211
0.197655	12:31:25	555	560	0.200	0.198	2.00E-05	0.070	5.69E-05	205
0.195209	12:31:30	560	565	0.198	0.195	1.92E-05	0.070	5.52E-05	199
0.192864	12:31:35	565	570	0.195	0.193	1.84E-05	0.069	5.35E-05	193
								2.47E-05	89
0.190724	12:31:40	570	575	0.193	0.191	1.68E-05	0.068		
0.188175	12:31:45	575	580	0.191	0.188	2.00E-05	0.067	5.94E-05	214
0.185831	12:31:50	580	585	0.188	0.186	1.84E-05	0.067	5.53E-05	199
0.183384	12:31:55	585	590	0.186	0.183	1.92E-05	0.066	5.84E-05	210
0.18104	12:32:00	590	595	0.183	0.181	1.84E-05	0.065	5.66E-05	204
0.179511	12:32:05	595	600	0.181	0.180	1.20E-05	0.064	3.72E-05	134
0.177472	12:32:10	600	605	0.180	0.177	1.60E-05	0.064	5.01E-05	180
0.175025	12:32:15	605	610	0.177	0.175	1.92E-05	0.063	6.08E-05	219
0.173191	12:32:20	610	615	0.175	0.173	1.44E-05	0.063	4.61E-05	166
0.171458	12:32:25	615	620	0.173	0.171	1.36E-05	0.062	4.39E-05	158
0.169419	12:32:30	620	625	0.171	0.169	1.60E-05	0.061	5.22E-05	188
0.166361	12:32:35	625	630	0.169	0.166	2.40E-05	0.061	7.93E-05	285
0.164098	12:32:40	630	635	0.166	0.164	1.78E-05	0.060	5.95E-05	214
0.161865	12:32:45	635	640	0.164	0.162	1.75E-05	0.059	5.94E-05	214
0.160163	12:32:50	640	645	0.162	0.160	1.34E-05	0.058	4.58E-05	165
0.158145	12:32:55	645	650	0.160	0.158	1.59E-05	0.058	5.48E-05	197
0.156269	12:33:00	650	655	0.158	0.156	1.47E-05	0.057	5.15E-05	185
		655					0.057	4.97E-05	
0.154475	12:33:05		660	0.156	0.154	1.41E-05			179
0.152691	12:33:10	660	665	0.154	0.153	1.40E-05	0.056	4.99E-05	180
0.150112	12:33:15	665	670	0.153	0.150	2.03E-05	0.055	7.31E-05	263
0.149072	12:33:20	670	675	0.150	0.149	8.17E-06	0.055	2.98E-05	107
0.147431	12:33:25	675	680	0.149	0.147	1.29E-05	0.054	4.74E-05	171
0.14476	12:33:30	680	685	0.147	0.145	2.10E-05	0.054	7.80E-05	281
0.142926	12:33:35	685	690	0.145	0.143	1.44E-05	0.053	5.43E-05	196
0.140714	12:33:40	690	695	0.143	0.141	1.74E-05	0.052	6.63E-05	239
0.139266	12:33:45	695	700	0.141	0.139	1.14E-05	0.052	4.39E-05	158
0.136922	12:33:50	700	705	0.139	0.137	1.84E-05	0.051	7.19E-05	259
0.135199	12:33:55	705	710	0.137	0.135	1.35E-05	0.051	5.35E-05	193
0.133415	12:34:00	710	715	0.135	0.133	1.40E-05	0.050	5.60E-05	202
0.13157	12:34:05	715	720	0.133	0.132	1.45E-05	0.049	5.86E-05	211
0.130133	12:34:10	720	725	0.132	0.130	1.13E-05	0.049	4.61E-05	166
0.127808	12:34:15	725	730	0.130	0.128	1.83E-05	0.048	7.55E-05	272

0.126279	12:34:20	730	735	0.128	0.126	1.20E-05	0.048	5.03E-05	181
0.124383	12:34:25	735	740	0.126	0.124	1.49E-05	0.047	6.31E-05	227
0.122813	12:34:30	740	745	0.124	0.123	1.23E-05	0.047	5.28E-05	190
0.120846	12:34:35	745	750	0.123	0.121	1.55E-05	0.046	6.70E-05	241
				0.121	0.119				230
0.118991	12:34:40	750	755			1.46E-05	0.046	6.40E-05	
0.116667	12:34:45	755	760	0.119	0.117	1.83E-05	0.045	8.14E-05	293
0.114893	12:34:50	760	765	0.117	0.115	1.39E-05	0.044	6.30E-05	227
0.113344	12:34:55	765	770	0.115	0.113	1.22E-05	0.044	5.57E-05	200
0.11209	12:35:00	770	775	0.113	0.112	9.85E-06	0.043	4.55E-05	164
	3000 CO. T. CO. CO.	775	780						327
0.109623	12:35:05			0.112	0.110	1.94E-05	0.043	9.08E-05	
0.10842	12:35:10	780	785	0.110	0.108	9.45E-06	0.042	4.49E-05	162
0.106789	12:35:15	785	790	0.108	0.107	1.28E-05	0.042	6.15E-05	221
0.104577	12:35:20	790	795	0.107	0.105	1.74E-05	0.041	8.46E-05	305
0.10265	12:35:25	795	800	0.105	0.103	1.51E-05	0.040	7.49E-05	270
0.100449	12:35:30	800	805	0.103	0.100	1.73E-05	0.040	8.70E-05	313
0.099001	12:35:35	805	810	0.100	0.099	1.14E-05	0.039	5.80E-05	209
0.097686	12:35:40	810	815	0.099	0.098	1.03E-05	0.039	5.33E-05	192
0.096096	12:35:45	815	820	0.098	0.096	1.25E-05	0.038	6.52E-05	235
0.094088	12:35:50	820	825	0.096	0.094	1.58E-05	0.038	8.36E-05	301
0.092773	12:35:55	825	830	0.094	0.093	1.03E-05	0.037	5.55E-05	200
0.091702	12:36:00	830	835	0.093	0.092	8.41E-06	0.037	4.56E-05	164
0.089898	12:36:05	835	840	0.092	0.090	1.42E-05	0.036	7.79E-05	280
0.088053	12:36:10	840	845	0.090	0.088	1.45E-05	0.036	8.09E-05	291
0.08682	12:36:15	845	850	0.088	0.087	9.69E-06	0.035	5.49E-05	197
0.085138	12:36:20	850	855	0.087	0.085	1.32E-05	0.035	7.58E-05	273
0.083252	12:36:25	855	860	0.085	0.083	1.48E-05	0.034	8.64E-05	311
0.081957	12:36:30	860	865	0.083	0.082	1.02E-05	0.034	6.02E-05	217
0.080591	12:36:35	865	870	0.082	0.081	1.07E-05	0.033	6.43E-05	231
		870	875	0.081					178
0.079551	12:36:40	2000000			0.080	8.17E-06	0.033	4.95E-05	
0.077971	12:36:45	875	880	0.080	0.078	1.24E-05	0.033	7.61E-05	274
0.076086	12:36:50	880	885	0.078	0.076	1.48E-05	0.032	9.24E-05	333
0.075056									
	12:36:55	885	890	0.076	0.075	8.09E-06	0.032	5.12E-05	184
0.072762	12:37:00	890	895	0.075	0.073	1.80E-05	0.031	1.16E-04	417
0.071916	12:37:05	895	900	0.073	0.072	6.65E-06	0.031	4.35E-05	156
						and the same of th			
0.070306	12:37:10	900	905	0.072	0.070	1.26E-05	0.030	8.38E-05	302
0.068502	12:37:15	905	910	0.070	0.069	1.42E-05	0.030	9.56E-05	344
0.066871	12:37:20	910	915	0.069	0.067	1.28E-05	0.029	8.80E-05	317
0.065933	12:37:25	915	920	0.067	0.066	7.37E-06	0.029	5,13E-05	185
0.06422	12:37:30	920	925	0.066	0.064	1.35E-05	0.028	9.51E-05	342
0.06314	12:37:35	925	930	0.064	0.063	8.49E-06	0.028	6.09E-05	219
0.061498	12:37:40	930	935	0.063	0.061	1.29E-05	0.027	9,40E-05	338
0.06002	12:37:45	935	940	0.061	0.060	1.16E-05	0.027	8.62E-05	310
0.05895	12:37:50	940	945	0.060	0.059	8.41E-06	0.027	6.33E-05	228
0.05737	12:37:55	945	950	0.059	0.057	1.24E-05	0.026	9.50E-05	342
0.056177	12:38:00	950	955	0.057	0.056	9.37E-06	0.026	7.29E-05	263
0.054628		955		0.056	0.055	1.22E-05	0.025	9.64E-05	347
	12:38:05		960						
0.053354	12:38:10	960	965	0.055	0.053	1.00E-05	0.025	8.07E-05	290
0.051631	12:38:15	965	970	0.053	0.052	1.35E-05	0.024	1.11E-04	400
0.050153			975	0.052	0.050	1.16E-05	0.024	9.74E-05	351
	12:38:20	970							
0.04946	12:38:25	975	980	0.050	0.049	5.44E-06	0.024	4.63E-05	167
0.048226	12:38:30	980	985	0.049	0.048	9.69E-06	0.023	8.35E-05	301
								1.24E-04	
0.046432	12:38:35	985	990	0.048	0.046	1.41E-05	0.023		446
0.04525	12:38:40	990	995	0.046	0.045	9.29E-06	0.022	8.35E-05	300
0.044077	12:38:45	995	1000	0.045	0.044	9.21E-06	0.022	8.41E-05	303
	40 00 50		400-	0011	0010			o -	
0.043017	12:38:50	1000	1005	0.044	0.043	8.33E-06	0.022	7.73E-05	278
0.041662	12:38:55	1005	1010	0.043	0.042	1.06E-05	0.021	1.01E-04	362
0.040326	12:39:00	1010	1015	0.042	0.040	1.05E-05	0.021	1.01E-04	364
0.038879	12:39:05	1015	1020	0.040	0.039	1.14E-05	0.020	1.12E-04	403
						7.45E-06			
0.037931	12:39:10	1020	1025	0.039	0.038		0.020	7.48E-05	269
0.036493	12:39:15	1025	1030	0.038	0.036	1.13E-05	0.020	1.16E-04	416
0.035138	12:39:20	1030	1035	0.036	0.035	1.06E-05	0.019	1.11E-04	401
				0.035		6.48E-06		6.91E-05	249
0.034312	12:39:25	1035	1040		0.034		0.019		
0.032997	12:39:30	1040	1045	0.034	0.033	1.03E-05	0.018	1.12E-04	404
0.031417	12:39:35	1045	1050	0.033	0.031	1.24E-05	0.018	1.38E-04	497
0.030285	12:39:40	1050	1055	0.031	0.030	8.89E-06	0.018	1.01E-04	365
0.029633	12:39:45	1055	1060	0.030	0.030	5.12E-06	0.017	5.94E-05	214
0.028349	12:39:50	1060	1065	0.030	0.028	1.01E-05	0.017	1.19E-04	428
0.027146	12:39:55	1065	1070	0.028	0.027	9.45E-06	0.017	1.14E-04	410
0.026167	12:40:00	1070	1075	0.027	0.026	7.69E-06	0.016	9.47E-05	341
0.024546	12:40:05	1075	1080	0.026	0.025	1.27E-05	0.016	1.61E-04	579
0.023945	12:40:10	1080	1085	0.025	0.024	4.72E-06	0.015	6.11E-05	220
0.022844	12:40:15	1085	1090	0.024	0.023	8.65E-06	0.015	1.14E-04	409
0.021488	12:40:20	1090	1095	0.023	0.021	1.06E-05	0.015	1.44E-04	517
0.020224	12:40:25	1095	1100	0.021	0.020	9.93E-06	0.014	1.38E-04	496
0.018665	12:40:30	1100	1105	0.020	0.019	1.22E-05	0.014	1.75E-04	632
0.017686	12:40:35	1105	1110	0.019	0.018	7.69E-06	0.014	1.13E-04	408
0.016504	12:40:40	1110	1115	0.018	0.017	9.29E-06	0.013	1.40E-04	506
0.015627	12:40:45	1115	1120	0.017	0.016	6.89E-06	0.013	1.07E-04	384
0.015076	12:40:50	1120	1125	0.016	0.015	4.32E-06	0.013	6.82E-05	246
		0.000 mm	3245	1.000	Carrier House		(2) (2) (2) (3)	AND DESCRIPTION OF THE PARTY OF	7,007,600

12:40:55	1125	1130	0.015	0.014	6.40E-06	0.012	1.03E-04	370
12:41:00	1130	1135	0.014	0.012	1.49E-05	0.012	2.47E-04	891
12:41:05	1135	1140	0.012	0.011	8.41E-06	0.012	1,45E-04	523
12:41:10	1140	1145	0.011	0.010	6.56E-06	0.011	1.16E-04	419
12:41:15		1150	0.010	0.010	6.16E-06	0.011	1.12E-04	403
			0.010	0.008	1.22E-05	0.011	2.30E-04	828
		7 10 10 10 10 10 10 10						472
								844
		1000000						440
	300000000000000000000000000000000000000	2000000						602
		1180	0.004	0.003	6.08E-06	0.009		487
		1185		0.002			2.38E-04	857
		2000 1000 2000	0.002	0.001				807
			0.001					741
		1200	0.000	-0.002	1.23E-05	0.008	3.28E-04	1180
		1205	-0.002	-0.003	7.53E-06	0.007	2.11E-04	760
12:42:15		1210	-0.003	-0.004	6.97E-06	0.007	2.04E-04	733
			-0.004	-0.005				1018
			-0.005	-0.006				1420
			-0.006					530
		1230	-0.007	-0.008	8.49E-06	0.006	3.08E-04	1109
		1235	-0.008	-0.009	8.81E-06	0.005	3.41E-04	1228
12:42:45	1235	1240	-0.009	-0.010	5.76E-06	0.005	2.37E-04	852
12:42:50	1240	1245	-0.010	-0.011	6.73E-06	0.005	2.91E-04	1047
12:42:55	1245	1250	-0.011	-0.012	9.37E-06	0.004	4.36E-04	1568
12:43:00	1250	1255	-0.012	-0.013	7.05E-06	0.004	3.55E-04	1277
12:43:05	1255	1260	-0.013	-0.014	6.00E-06	0.004	3.24E-04	1165
12:43:10	1260	1265	-0.014	-0.014	3.44E-06	0.004	1.95E-04	704
12:43:15	1265	1270	-0.014	-0.015	7.53E-06	0.003	4.56E-04	1640
12:43:20	1270	1275	-0.015	-0.016	9.37E-06	0.003	6.32E-04	2274
12:43:25	1275	1280	-0.016	-0.016	2.32E-06	0.003	1.70E-04	612
12:43:30	1280	1285	-0.016	-0.018	1.59E-05	0.002	1.35E-03	4847
12:43:35	1285	1290	-0.018	-0.019	3.20E-06	0.002	3.23E-04	1162
12:43:40	1290	1295	-0.019	-0.020	8.81E-06	0.002	1.01E-03	3636
12:43:45	1295	1300	-0.020	-0.022	1.19E-05	0.001	1.80E-03	6463
12:43:50	1300	1305	-0.022	-0.022	5.60E-06	0.001	1.15E-03	4124
12:43:55	1305	1310	-0.022	-0.023	4.80E-06	0.001	1.25E-03	4491
12:44:00	1310	1315	-0.023	-0.023	3.04E-06	0.001	9.92E-04	3572
12:44:05	1315	1320	-0.023	-0.023	-3.44E-06	0.001	-1.11E-03	-3990
12:44:10	1320	1325	-0.023	-0.022	-3.36E-06	0.001	-8.88E-04	-3197
12:44:15	1325	1330	-0.022	-0.022	-1.52E-06	0.001	-3.56E-04	-1281
12:44:20								-15497
12:44:25	1335			-0.018				-1032
12:44:30	1340	1345	-0.018	-0.017	-3.92E-06	0.002	-3.22E-04	-1161
12:44:35	1345	1350	-0.017	-0.017	-3.44E-06		-2.67E-04	-960
12:44:40	1350	1355	-0.017	-0.016	-2.16E-06		-1.61E-04	-578
12:44:45		1360	-0.016	-0.016	-2.40E-06		-1.73E-04	-621
12:44:50	1360	1365	-0.016	-0.016	1.28E-06	0.003	9.13E-05	329
12:44:55	1365	1370	-0.016	-0.016	-1.20E-06	0.003	-8.56E-05	-308
	12:41:00 12:41:05 12:41:15 12:41:20 12:41:25 12:41:30 12:41:45 12:41:45 12:41:45 12:41:45 12:41:45 12:41:55 12:42:00 12:42:05 12:42:10 12:42:25 12:42:30 12:42:35 12:42:40 12:42:55 12:42:30 12:42:55 12:42:40 12:42:55 12:43:30 12:43:35 12:43:40 12:43:45 12:43:55 12:43:40 12:43:45 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:43:40 12:43:55 12:44:40 12:44:55 12:44:25 12:44:25 12:44:25 12:44:30 12:44:50 12:44:50	12:41:00	12:41:00 1130 1135 12:41:05 1135 1140 12:41:15 1140 1145 12:41:20 1150 1155 12:41:25 1155 1160 12:41:30 1160 1165 12:41:35 1165 1170 12:41:40 1170 1175 12:41:45 1175 1180 12:41:50 1180 1185 12:41:55 1185 1190 12:42:00 1190 1195 12:42:01 1200 1205 12:42:10 1200 1205 12:42:15 1205 1210 12:42:20 1210 1215 12:42:20 1210 1215 12:42:23 1220 1225 12:42:35 1225 1230 12:42:40 1230 1235 12:42:45 1235 1240 12:42:45 1235 1240 12:42:45 1235 1240 <th>12:41:00 1130 1135 0.014 12:41:05 1135 1140 0.012 12:41:10 1140 1145 0.010 12:41:15 1145 1150 0.010 12:41:20 1150 1155 0.010 12:41:25 1155 1160 0.008 12:41:30 1160 1165 0.007 12:41:41 1170 1175 0.005 12:41:40 1170 1175 0.005 12:41:45 1175 1180 0.004 12:41:50 1180 1185 0.003 12:41:55 1185 1190 0.002 12:42:00 1190 1195 0.001 12:42:01 1200 1205 -0.002 12:42:10 1200 1205 -0.002 12:42:15 1205 1210 -0.003 12:42:20 1210 1215 -0.004 12:42:30 1220 1225 -0.006 12</th> <th>12:41:00 1130 1135 0.014 0.012 12:41:05 1135 1140 0.012 0.011 12:41:10 1140 1145 0.011 0.010 12:41:15 1145 1150 0.010 0.008 12:41:20 1150 1155 0.010 0.008 12:41:30 1160 1165 0.007 0.006 12:41:30 1165 1170 0.006 0.005 12:41:40 1170 1175 0.005 0.004 12:41:41 1170 1175 0.005 0.004 12:41:42 1170 1185 0.003 0.002 12:41:50 1180 1185 0.003 0.002 12:41:50 1180 1185 0.003 0.002 12:42:00 1190 1195 0.001 0.002 12:42:01 1200 1205 -0.002 -0.003 12:42:10 1200 1205 -0.002 -0.003</th> <th>12:41:00</th> <th>12:41:00</th> <th> 1241-05</th>	12:41:00 1130 1135 0.014 12:41:05 1135 1140 0.012 12:41:10 1140 1145 0.010 12:41:15 1145 1150 0.010 12:41:20 1150 1155 0.010 12:41:25 1155 1160 0.008 12:41:30 1160 1165 0.007 12:41:41 1170 1175 0.005 12:41:40 1170 1175 0.005 12:41:45 1175 1180 0.004 12:41:50 1180 1185 0.003 12:41:55 1185 1190 0.002 12:42:00 1190 1195 0.001 12:42:01 1200 1205 -0.002 12:42:10 1200 1205 -0.002 12:42:15 1205 1210 -0.003 12:42:20 1210 1215 -0.004 12:42:30 1220 1225 -0.006 12	12:41:00 1130 1135 0.014 0.012 12:41:05 1135 1140 0.012 0.011 12:41:10 1140 1145 0.011 0.010 12:41:15 1145 1150 0.010 0.008 12:41:20 1150 1155 0.010 0.008 12:41:30 1160 1165 0.007 0.006 12:41:30 1165 1170 0.006 0.005 12:41:40 1170 1175 0.005 0.004 12:41:41 1170 1175 0.005 0.004 12:41:42 1170 1185 0.003 0.002 12:41:50 1180 1185 0.003 0.002 12:41:50 1180 1185 0.003 0.002 12:42:00 1190 1195 0.001 0.002 12:42:01 1200 1205 -0.002 -0.003 12:42:10 1200 1205 -0.002 -0.003	12:41:00	12:41:00	1241-05

Test one average soakage rate from 25-1100seconds 246 Lm⁻²h⁻¹

PIGT PIGT

Test Name: PT-02		Test hole Diameter:	Test hole Diameter: 0.1		Base Area (B):		
Test Date:	July 29th 2023	Test hole Depth:	0.7	Circumfr	ence (C):		0.314
Level Loggger #:	2128031	Level Logger Depth:	0.45	T1:	12:58:30	T2:	13:04:00
	•	•		T3:	13:07:05		

		time	steps	Depth	Steps	Volume Soaked	Soakage Surface Area	Soakag	kage Rate	
Level	Time	t0	t1	h0	h1	V=(h0-h1)*B	A=(C*(h0+h1)/2)+B	SR=V/A/(t1- t0)	SR*60*60* 1000	
m	hh:mm:ss		S	ı	n	m³	m²	m ³ m ⁻² s ⁻¹	Lm ⁻² h ⁻¹	

	111111111111111111111111111111111111111					111	111	I III III S	LIII II
					TEO	CONE .			
0.442406	12:58:30	0		88	-	-	2		4
0.383078	12:58:35	o	5	0.442	0.383	4.66E-04	0.138	6.78E-04	2440
0.333843	12:58:40	5	10	0.383	0.334	3.87E-04	0.120	6.42E-04	2311
0.294801	12:58:45	10	15	0.334	0.295	3.07E-04	0.107	5.75E-04	2071
0.262283	12:58:50	15	20	0.295	0.262	2.55E-04	0.095	5.36E-04	1928
0.233945	12:58:55	20	25	0.262	0.234	2.23E-04	0.086	5.19E-04	1868
0.208869 0.186137	12:59:00 12:59:05	25 30	30 35	0.234	0.209	1.97E-04 1.79E-04	0.077	5.09E-04 5.11E-04	1832 1839
0.16524	12:59:05	35	40	0.186	0.165	1.64E-04	0.063	5.21E-04	1874
0.146198	12:59:15	40	45	0.165	0.146	1.50E-04	0.057	5.27E-04	1897
0.128919	12:59:20	45	50	0.146	0.129	1.36E-04	0.051	5.31E-04	1913
0.112222	12:59:25	50	55	0.129	0.112	1.31E-04	0.046	5.74E-04	2065
0.09633	12:59:30	55	60	0.112	0.096	1.25E-04	0.041	6.15E-04	2213
0.081417	12:59:35	60	65	0.096	0.081	1.17E-04	0.036	6.55E-04	2357
0.068114	12:59:40	65	70	0.081	0.068	1.04E-04	0.031	6.67E-04	2400
0.054873	12:59:45	70	75	0.068	0.055	1.04E-04	0.027	7.65E-04	2756
0.042518	12:59:50	75	80	0.055	0.043	9.70E-05	0.023	8.38E-04	3018
0.03055	12:59:55	80	85	0.043	0.031	9.40E-05	0.019	9.72E-04	3501
0.020061	13:00:00	85	90	0.031	0.020	8.24E-05	0.016	1.04E-03	3753
0.010163	13:00:05	90	95	0.020	0.010	7.77E-05	0.013	1.23E-03	4442
0.000224	13:00:10	95	100	0.010	0.000	7.81E-05	0.009	1.65E-03	5925
-0.0087	13:00:15	100	105	0.000	-0.009	7.01E-05	0.007	2.15E-03	7732
-0.01742 -0.01815	13:00:20 13:00:25	105 110	110 115	-0.009 -0.017	-0.017 -0.018	6.85E-05 5.76E-06	0.004	3.65E-03 5.09E-04	13152 1832
-0.01848	13:00:23	115	120	-0.017	-0.018	2.56E-06	0.002	2.44E-04	879
-0.01841	13:00:35	120	125	-0.018	-0.018	-5.60E-07	0.002	-5.44E-05	-196
-0.01817	13:00:40	125	130	-0.018	-0.018	-1.92E-06	0.002	-1.82E-04	-656
-0.01821	13:00:45	130	135	-0.018	-0.018	3.20E-07	0.002	2.99E-05	108
-0.01802	13:00:50	135	140	-0.018	-0.018	-1.44E-06	0.002	-1.33E-04	-480
-0.0183	13:00:55	140	145	-0.018	-0.018	2.16E-06	0.002	2.01E-04	724
-0.01814	13:01:00	145	150	-0.018	-0.018	-1.20E-06	0.002	-1.13E-04	-406
-0.01835	13:01:05	150	155	-0.018	-0.018	1.60E-06	0.002	1.51E-04	543
-0.01843 -0.01841	13:01:10 13:01:15	155 160	160 165	-0.018 -0.018	-0.018 -0.018	6.40E-07 -1.60E-07	0.002	6.17E-05 -1.55E-05	-56
-0.01866	13:01:20	165	170	-0.018	-0.019	2.00E-06	0.002	1.97E-04	710
-0.01905	13:01:25	170	175	-0.019	-0.019	3.04E-06	0.002	3.15E-04	1135
-0.01899	13:01:30	175	180	-0.019	-0.019	-4.80E-07	0.002	-5.12E-05	-184
-0.01861	13:01:35	180	185	-0.019	-0.019	-2.96E-06	0.002	-3.04E-04	-1095
-0.01881	13:01:40	185	190	-0.019	-0.019	1.52E-06	0.002	1.54E-04	554
-0.01865	13:01:45	190	195	-0.019	-0.019	-1.20E-06	0.002	-1.22E-04	-439
-0.01871	13:01:50	195	200	-0.019	-0.019	4.00E-07	0.002	4.03E-05	145
-0.01905	13:01:55	200	205	-0.019	-0.019	2.72E-06	0.002	2.83E-04	1019
-0.01882 -0.01889	13:02:00 13:02:05	205 210	210 215	-0.019 -0.019	-0.019 -0.019	-1.84E-06 5.60E-07	0.002 0.002	-1.93E-04 5.80E-05	-696 209
-0.01893	13:02:10	215	220	-0.019	-0.019	3.20E-07	0.002	3.35E-05	121
-0.01934	13:02:15	220	225	-0.019	-0.019	3.20E-06	0.002	3.48E-04	1251
-0.01963	13:02:20	225	230	-0.019	-0.020	2.32E-06	0.002	2.68E-04	965
-0.02003	13:02:25	230	235	-0.020	-0.020	3.12E-06	0.002	3.85E-04	1385
-0.01991	13:02:30	235	240	-0.020	-0.020	-9.61E-07	0.002	-1.22E-04	-438
-0.01978	13:02:35	240	245	-0.020	-0.020	-1.04E-06	0.002	-1.28E-04	-462
-0.01933	13:02:40	245	250	-0.020	-0.019	-3.52E-06	0.002	-4.12E-04	-1482
-0.01985	13:02:45	250 255	255	-0.019 -0.020	-0.020 -0.020	4.08E-06 6.40E-07	0.002	4.80E-04	1729 287
-0.01993 -0.01954	13:02:50 13:02:55	260	260 265	-0.020	-0.020	-3.04E-06	0.002	7.98E-05 -3.68E-04	-1324
-0.01957	13:03:00	265	270	-0.020	-0.020	2.40E-07	0.002	2.81E-05	101
-0.01978	13:03:05	270	275	-0.020	-0.020	1.60E-06	0.002	1.91E-04	689
-0.01995	13:03:10	275	280	-0.020	-0.020	1.36E-06	0.002	1.69E-04	607
-0.02049	13:03:15	280	285	-0.020	-0.020	4.24E-06	0.002	5.65E-04	2034
-0.02012	13:03:20	285	290	-0.020	-0.020	-2.88E-06	0.001	-3.91E-04	-1407
-0.0205	13:03:25	290	295	-0.020	-0.020	2.96E-06	0.001	4.02E-04	1448
-0.02048	13:03:30	295	300	-0.020	-0.020	-1.60E-07	0.001	-2.26E-05	-81
-0.02111	13:03:35	300	305	-0.020	-0.021	4.96E-06	0.001	7.52E-04	2705
0.417227	12-04-00	0			TES1	TWO			
0.417227	13:04:00 13:04:05	0	5	0.417	0.407	8.09E-05	0.137	1.18E-04	424
0.374618	13:04:10	5	10	0.407	0.375	2.54E-04	0.131	3.89E-04	1399
260000000000000000000000000000000000000	\$1.0 CH 10 CH 10 CH	7.	200.00		17-18-18-18-18-18-18-18-18-18-18-18-18-18-		12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Control of the Control	1000000

0.346381	13:04:15	10	15	0.375	0.346	2-22E-04	0.121	3.66E-04	1318
0.322732	13:04:20	15	20	0.346	0.323	1.86E-04	0.113	3.29E-04	1184
0.301937	13:04:25	20	25	0.323	0.302	1.63E-04	0.106	3.08E-04	1110
0.28318	13:04:30	25	30	0.302	0.283	1.47E-04	0.100	2.95E-04	1063
0.265443	13:04:35	30	35	0.283	0.265	1.39E-04	0.094	2.96E-04	1067
0.249541	13:04:40	35	40	0.265	0.250	1.25E-04	0.089	2.81E-04	1013
0.233537	13:04:45	40	45	0.250	0.234	1.26E-04	0.084	3.00E-04	1081
								2.88E-04	1037
0.219062	13:04:50	45	50	0.234	0.219	1.14E-04	0.079		
0.204893	13:04:55	50	55	0.219	0.205	1.11E-04	0.074	2.99E-04	1076
0.191131	13:05:00	55	60	0.205	0.191	1.08E-04	0.070	3.09E-04	1111
0.177166	13:05:05	60	65	0.191	0.177	1.10E-04	0.066	3.34E-04	1202
0.164934	13:05:10	65	70	0.177	0.165	9.61E-05	0.062	3.12E-04	1123
0.152304	13:05:15	70	75	0.165	0.152	9.92E-05	0.058	3.44E-04	1238
0.14053	13:05:20	75	80	0.152	0.141	9.25E-05	0.054	3,43E-04	1236
0.128461	13:05:25	80	85	0.141	0.128	9.48E-05	0.050	3.78E-04	1362
0.117034	13:05:30	85	90	0.128	0.117	8.97E-05	0.046	3.87E-04	1392
0.105576	13:05:35	90	95	0.117	0.106	9.00E-05	0.043	4.20E-04	1513
0.094985	13:05:40	95	100	0.106	0.095	8.32E-05	0.039	4.23E-04	1522
0.085036	13:05:45	100	105	0.095	0.085	7.81E-05	0.036	4.33E-04	1557
0.074393	13:05:50	105	110	0.085	0.074	8.36E-05	0.033	5.08E-04	1829
0.064006	13:05:55	110	115	0.074	0.064	8.16E-05	0.030	5.51E-04	1985
0.05579	13:06:00	115	120	0.064	0.056	6.45E-05	0.027	4.84E-04	1742
0.046381	13:06:05	120	125	0.056	0.046	7.39E-05	0.024	6.18E-04	2226
0.037849	13:06:10	125	130	0.046	0.038	6.70E-05	0.021	6.36E-04	2288
0.029582	13:06:15	130	135	0.038	0.030	6.49E-05	0.018	7.04E-04	2534
0.021702	13:06:20	135	140	0.030	0.022	6.19E-05	0.016	7.78E-04	2801
0.013996	13:06:25	140	145	0.022	0.014	6.05E-05	0.013	8.99E-04	3237
0.006463	13:06:30	145	150	0.014	0.006	5.92E-05	0.011	1.07E-03	3849
-0.00068	13:06:35	150	155	0.006	-0.001	5.61E-05	0.009	1.28E-03	4612
-0.00819	13:06:40	155	160	-0.001	-0.008	5.89E-05	0.006	1.82E-03	6567
-0.01479	13:06:45	160	165	-0.008	-0.015	5.19E-05	0.004	2.44E-03	8800
					TEST	THREE			
0.426504	13:07:05	0		12	_	-	¥	-	-
0.400815	13:07:10	0	5	0.427	0.401	2.02E-04	0.138	2.93E-04	1054
0.373293	13:07:15	5	10	0.401	0.373	2.16E-04	0.129	3.34E-04	1202
0.349847	13:07:20	10	15	0.373	0.350	1.84E-04	0.121	3.03E-04	1092
0.330581	13:07:25	15	20	0.350	0.331	1.51E-04	0.115	2.64E-04	950
0.314169	13:07:30	20	25	0.331	0.314	1.29E-04	0.109	2.36E-04	850
0.298777	13:07:35	25	30	0.314	0.299	1.21E-04	0.104	2.32E-04	836
0.284404	13:07:40	30	35	0.299	0.284	1.13E-04	0.099	2.27E-04	817
0.270336	13:07:45	35	40	0.284	0.270	1.10E-04	0.095	2.33E-04	837
0.255861	13:07:50	40	45	0.270	0.256	1.14E-04	0.091	2.51E-04	904
0.242712	13:07:55	45	50	0.256	0.243	1.03E-04	0.086	2.40E-04	863
0.230275	13:08:00	50	55	0.243	0.230	9.77E-05	0.082	2.38E-04	856
0.217635	13:08:05	55	60	0.230	0.218	9.93E-05	0.078	2.54E-04	914
0.206422	13:08:10	60	65	0.218	0.206	8.81E-05	0.074	2,37E-04	852
0.194088	13:08:15	65	70	0.206	0.194	9.69E-05	0.071	2.74E-04	986
			223						
0.181855	13:08:20	70	75	0.194	0.182	9.61E-05	0.067	2.87E-04	1034
0.17054	13:08:25	75	80	0.182	0.171	8.89E-05	0.063	2.81E-04	1012
0.159613	13:08:30	80	85	0.171	0.160	8.58E-05	0.060	2.87E-04	1035
0.148899	13:08:35	85	90	0.160	0.149	8.41E-05	0.056	2.99E-04	1076
0.139235	13:08:40	90	95	0.149	0.139	7.59E-05	0.053	2.86E-04	1029
0.127666	13:08:45	95	100	0.139	0.128	9.09E-05	0.050	3.65E-04	1314
0.117737	13:08:50	100	105	0.128	0.118	7.80E-05	0.046	3.36E-04	1210
0.10789	13:08:55	105	110	0.118	0.108	7.73E-05	0.043	3.57E-04	1286
0.098624	13:09:00	110	115	0.108	0.099	7.28E-05	0.040	3.61E-04	1300
0.088573	13:09:05	115	120	0.099	0.089	7.89E-05	0.037	4,24E-04	1525
		120		0.089	0.078	8.10E-05	0.034	4.76E-04	1713
0.078257	13:09:10		125						
0.070714	13:09:15	125	130	0.078	0.071	5.92E-05	0.031	3.79E-04	1365
0.061407	13:09:20	130	135	0.071	0.061	7.31E-05	0.029	5.11E-04	1840
0.053629	13:09:25	135	140	0.061	0.054	6.11E-05	0.026	4.71E-04	1697
0.045708	13:09:30	140	145	0.054	0.046	6.22E-05	0.023	5.30E-04	1909
0.037747	13:09:35	145	150	0.046	0.038	6.25E-05	0.021	5.97E-04	2148
0.031162	13:09:40	150	155	0.038	0.031	5.17E-05	0.019	5.54E-04	1994
0.023517	13:09:45	155	160	0.031	0.024	6.00E-05	0.016	7.30E-04	2629
0.016667	13:09:50	160	165	0.024	0.017	5.38E-05	0.014	7.60E-04	2734
0.009113	13:09:55	165	170	0.017	0.009	5.93E-05	0.012	9.97E-04	3588
0.002518	13:10:00	170	175	0.009	0.003	5.18E-05	0.010	1.07E-03	3852
-0.00392	13:10:05	175	180	0.003	-0.004	5.06E-05	0.008	1.33E-03	4773
-0.01048	13:10:10	180	185	-0.004	-0.010	5.15E-05	0.006	1.84E-03	6629
-0.01636	13:10:15	185	190	-0.010	-0.016	4.62E-05	0.004	2.54E-03	9143
-0.02253	13:10:20	190	195	-0.016	-0.023	4.84E-05	0.002	5.55E-03	19982
-0.02572	13:10:25	195	200	-0.023	-0.026	2.51E-05	0.000	1.82E-02	65512
-0.02597	13:10:30	200	205	-0.026	-0.026	2.00E-06	0.000	-1.51E-03	-5422
-0.02577	13:10:35	205	210	-0.026	-0.026	-1.60E-06	0.000	1.17E-03	4211
-0.02539	13:10:40	210	215	-0.026	-0.025	-2.96E-06	0.000	3.25E-03	11684
-0.02574	13:10:45	215	220	-0.025	-0.026	2.72E-06	0.000	-3.06E-03	-11027
-0.02582	13:10:50	220	225	-0.026	-0.026	6.40E-07	0.000	-5.23E-04	-1882
-0.02584	13:10:55	225	230	-0.026	-0.026	1.60E-07	0.000	-1.23E-04	-442

-0.02536	13:11:00	230	235	-0.026	-0.025	-3.76E-06	0.000	3.98E-03	14339
-0.02523	13:11:05	235	240	-0.025	-0.025	-1.04E-06	0.000	2.24E-03	8069
-0.02529	13:11:10	240	245	-0.025	-0.025	4.80E-07	0.000	-1.18E-03	-4235
-0.0256	13:11:15	245	250	-0.025	-0.026	2.40E-06	0.000	-3.45E-03	-12414
-0.02545	13:11:20	250	255	-0.026	-0.025	-1.12E-06	0.000	1.36E-03	4893
-0.02551	13:11:25	255	260	-0.025	-0.026	4.80E-07	0.000	-6.32E-04	-2274
-0.02527	13:11:30	260	265	-0.026	-0.025	-1.92E-06	0.000	3.12E-03	11221
-0.02535	13:11:35	265	270	-0.025	-0.025	6.40E-07	0.000	-1.31E-03	-4721
-0.0261	13:11:40	270	275	-0.025	-0.026	5.84E-06	0.000	-5.14E-03	-18507
-0.02551	13:11:45	275	280	-0.026	-0.026	-4.56E-06	0.000	3.61E-03	12987
-0.02559	13:11:50	280	285	-0.026	-0.026	5.60E-07	0.000	-6.48E-04	-2333
-0.02612	13:11:55	285	290	-0.026	-0.026	4.16E-06	0.000	-3.11E-03	-11210
-0.02631	13:12:00	290	295	-0.026	-0.026	1.52E-06	0.000	-7.98E-04	-2874
-0.02599	13:12:05	295	300	-0.026	-0.026	-2.48E-06	0.000	1.37E-03	4938
-0.02587	13:12:10	300	305	-0.026	-0.026	-9.61E-07	0.000	6.56E-04	2361
-0.02602	13:12:15	305	310	-0.026	-0.026	1.20E-06	0.000	-8.06E-04	-2903
-0.02617	13:12:20	310	315	-0.026	-0.026	1.12E-06	0.000	-6.51E-04	-2344
-0.02579	13:12:25	315	320	-0.026	-0.026	-2.96E-06	0.000	1.93E-03	6938
-0.02538	13:12:30	320	325	-0.026	-0.025	-3.20E-06	0.000	3.48E-03	12522
-0.02491	13:12:35	325	330	-0.025	-0.025	-3.68E-06	0.000	1.59E-02	57103
-0.02452	13:12:40	330	335	-0.025	-0.025	-3.12E-06	0.000	-6.96E-03	-25071
-0.02449	13:12:45	335	340	-0.025	-0.024	-2.40E-07	0.000	-3.06E-04	-1102
-0.02396	13:12:50	340	345	-0.024	-0.024	-4.16E-06	0.000	-3.40E-03	-12235
-0.02457	13:12:55	345	350	-0.024	-0.025	4.80E-06	0.000	4.14E-03	14897
-0.02403	13:13:00	350	355	-0.025	-0.024	-4.24E-06	0.000	-3.84E-03	-13826
-0.02365	13:13:05	355	360	-0.024	-0.024	-2.96E-06	0.000	-1.62E-03	-5842
-0.02359	13:13:10	360	365	-0.024	-0.024	-4.80E-07	0.000	-2.21E-04	-797
-0.02274	13:13:15	365	370	-0.024	-0.023	-6.65E-06	0.001	-2.31E-03	-8300
-0.02311	13:13:20	370	375	-0.023	-0.023	2.88E-06	0.001	8.85E-04	3184
-0.02256	13:13:25	375	380	-0.023	-0.023	-4.32E-06	0.001	-1.27E-03	-4574
-0.02263	13:13:30	380	385	-0.023	-0.023	5.60E-07	0.001	1.48E-04	534
-0.02206	13:13:35	385	390	-0.023	-0.022	-4.48E-06	0.001	-1.07E-03	-3869
-0.02176	13:13:40	390	395	-0.022	-0.022	-2.32E-06	0.001	-4.79E-04	-1723
-0.02182	13:13:45	395	400	-0.022	-0.022	4.80E-07	0.001	9.54E-05	343
-0.02203	13:13:50	400	405	-0.022	-0.022	1.60E-06	0.001	3.32E-04	1194
-0.02181	13:13:55	405	410	-0.022	-0.022	-1.68E-06	0.001	-3.48E-04	-1252

Test one average soakage rate from 25-100seconds 2728 Lm⁻²h⁻¹

Test two average soakage rate from 25-150seconds 1683 Lm⁻²h⁻¹

Test three average soakage rate from 25-175seconds 1505 Lm⁻²h⁻¹

Test Name: PT-03		Test hole Diameter:	0.1 Base Area		a (B):		800.0
Test Date:	July 29th 2023	Test hole Depth:	1.8	Circumfr	ence (C):		0.314
Level Loggger #:	2128031	Level Logger Depth:	1.55	T1:	10:18:10	T2:	10:38:40
	-			T3:		i.	_

		time	steps	Depth	Steps	Volume Soaked	Soakage Surface Area	Soakag	ge Rate
Level	Time	t0	t1	h0	h1	V=(h0-h1)*B	A=(C*(h0+h1)/2)+B	SR=V/A/(t1- t0)	SR*60*60* 1000
m	hh:mm:ss		S	ı	n	m³	m²	m ³ m ⁻² s ⁻¹	Lm ⁻² h ⁻¹

- 101	1111.11111.00	-			***	111	111	mms	Lm n			
TEST ONE												
1.433252	10:18:10	0		84	-	-	4	*	4			
1.470051	10:18:15	0	5	1.433	1,470	-2.89E-04	0.464	-1.25E-04	-449			
1.287482	10:18:20	5	10	1.470	1.287	1.43E-03	0.441	6.50E-04	2341			
1.105117	10:18:25	10	15	1.287	1,105	1.43E-03	0.384	7.47E-04	2688			
0.969032	10:18:30 10:18:35	15	20	1.105 0.969	0.969	1.07E-03 8.36E-04	0.334	6.41E-04	2306 2036			
0.78055	10:18:35	20 25	25 30	0.863	0.781	6.44E-04	0.296	5.66E-04 4.85E-04	1745			
0.719286	10:18:45	30	35	0.781	0.719	4.81E-04	0.243	3.95E-04	1423			
0.669235	10:18:50	35	40	0.719	0.669	3.93E-04	0.226	3.48E-04	1253			
0.628767	10:18:55	40	45	0.669	0.629	3.18E-04	0.212	3.00E-04	1081			
0.59686	10:19:00	45	50	0.629	0.597	2.51E-04	0.200	2.50E-04	900			
0.571274	10:19:05	50	55	0.597	0.571	2.01E-04	0.191	2.10E-04	756			
0.551295	10:19:10	55	60	0.571	0.534	2.90E-04	0.182	3.19E-04	1150			
0.534373	10:19:15	60	65	0.534	0.534	0.00E+00	0.176	0.00E+00	0			
0.519694	10:19:20	65	70	0.534	0.520	1.15E-04	0.173	1,33E-04	479			
0.50685	10:19:25	70	75	0.520	0.507	1.01E-04	0.169	1.19E-04	430			
0.493874	10:19:30	75	80	0.507	0.494	1.02E-04	0.165	1.24E-04	445			
0.480948	10:19:35	80	85	0.494	0.481	1.02E-04	0.161	1,26E-04	454			
0.468787	10:19:40	85	90	0.481	0.469	9.55E-05	0.157	1.22E-04	438			
0.456626	10:19:45 10:19:50	90 95	95 100	0.469	0.457	9.55E-05 9.66E-05	0.153 0.149	1.25E-04 1.29E-04	449 466			
0.444322	10:19:55	100	105	0.444	0.433	9.11E-05	0.149	1.25E-04	450			
0.420989	10:20:00	105	110	0.433	0.421	9.22E-05	0.142	1.30E-04	467			
0.409246	10:20:05	110	115	0.421	0.409	9.22E-05	0.138	1.33E-04	480			
0.397299	10:20:10	115	120	0.409	0.397	9.38E-05	0.135	1.39E-04	502			
0.386137	10:20:15	120	125	0.397	0.386	8.77E-05	0.131	1.34E-04	482			
0.375056	10:20:20	125	130	0.386	0.375	8.70E-05	0.127	1.37E-04	492			
0.364118	10:20:25	130	135	0.375	0.364	8.59E-05	0.124	1.39E-04	499			
0.353272	10:20:30	135	140	0.364	0.353	8.52E-05	0,121	1.41E-04	509			
0.342864 0.332722	10:20:35 10:20:40	140 145	145 150	0.353	0.343	8.17E-05 7.97E-05	0.117	1.39E-04 1.40E-04	502			
0.332722	10:20:45	150	155	0.333	0.322	8.05E-05	0.111	1.45E-04	524			
0.312681	10:20:50	155	160	0.322	0.313	7.69E-05	0.108	1,43E-04	514			
0.303028	10:20:55	160	165	0.313	0.303	7.58E-05	0.105	1.45E-04	522			
0.294485	10:21:00	165	170	0.303	0.294	6.71E-05	0,102	1.32E-04	475			
0.285657	10:21:05	170	175	0.294	0.286	6.93E-05	0.099	1.40E-04	504			
0.277523	10:21:10	175	180	0.286	0.278	6.39E-05	0.096	1.33E-04	478			
0.268716	10:21:15	180	185	0.278	0.269	6.92E-05	0.094	1.48E-04	532			
0.261346	10:21:20	185	190	0.269	0.261	5.79E-05	0.091	1,27E-04	457			
0.253751 0.246718	10:21:25 10:21:30	190 195	195 200	0.261	0.254	5.96E-05 5.52E-05	0.089	1.34E-04 1.28E-04	484			
0.239929	10:21:35	200	205	0.247	0.240	5.33E-05	0.084	1.27E-04	455			
0.233323	10:21:40	205	210	0.240	0.233	5.19E-05	0.082	1.26E-04	454			
0.226748	10:21:45	210	215	0.233	0.227	5.16E-05	0.080	1.29E-04	464			
0.220968	10:21:50	215	220	0.227	0.221	4.54E-05	0.078	1.16E-04	418			
0.21578	10:21:55	220	225	0.221	0.216	4.08E-05	0.076	1.07E-04	384			
0.210163	10:22:00	225	230	0.216	0.210	4.41E-05	0.075	1.18E-04	425			
0.204618	10:22:05 10:22:10	230	235	0.210	0.205	4.36E-05	0.073	1.19E-04	430			
0.199837	10:22:10	235 240	240 245	0.205	0.200	3.75E-05 3.65E-05	0.071	1.05E-04 1.04E-04	379 376			
0.190652	10:22:10	245	250	0.195	0.191	3.56E-05	0.068	1.04E-04	375			
0.186208	10:22:25	250	255	0.191	0.186	3.49E-05	0.067	1.04E-04	375			
0.182477	10:22:30	255	260	0.186	0.182	2,93E-05	0.066	8.91E-05	321			
0.178338	10:22:35	260	265	0.182	0.178	3.25E-05	0.065	1.01E-04	363			
0.174353	10:22:40	265	270	0.178	0.174	3.13E-05	0.063	9.90E-05	356			
0.170347	10:22:45	270	275	0.174	0.170	3.15E-05	0.062	1.01E-04	365			
0.167085	10:22:50	275	280	0.170	0.167	2.56E-05	0.061	8.42E-05	303			
0.163517	10:22:55	280	285	0.167	0.164	2.80E-05	0.060	9.37E-05	337			
0.160153 0.157115	10:23:00 10:23:05	285 290	290 295	0.164	0.160	2.64E-05 2.39E-05	0.059	9.00E-05 8.27E-05	324 298			
0.157115	10:23:05	290	300	0.157	0.157	2.65E-05	0.057	9,35E-05	337			
0.153741	10:23:15	300	305	0.154	0.151	1.95E-05	0.056	7.01E-05	252			
0.147951	10:23:20	305	310	0.151	0.148	2.59E-05	0.055	9,46E-05	340			
0.145484	10:23:25	310	315	0.148	0.145	1.94E-05	0.054	7.18E-05	259			

0.14213	10:23:30	315	320	0.145	0.142	2.63E-05	0.053	9.93E-05	358
0.139837	10:23:35	320	325	0.142	0.140	1.80E-05	0.052	6.91E-05	249
0.13737	10:23:40	325	330	0.140	0.137	1.94E-05	0.051	7.54E-05	271
0.134393	10:23:45	330	335	0.137	0.134	2.34E-05	0.051	9.25E-05	333
0.131376	10:23:50	335	340	0.134	0.131	2.37E-05	0.050	9.56E-05	344
0.129246	10:23:55	340	345	0.131	0.129	1.67E-05	0.049	6.86E-05	247
0.126636	10:24:00	345	350	0.129	0.127	2.05E-05	0.048	8.53E-05	307
0.123996	10:24:05	350	355	0.127	0.124	2.07E-05	0.047	8.78E-05	316
0.122345	10:24:10	355	360	0.124	0.122	1.30E-05	0.047	5.57E-05	201
0.119419	10:24:15	360	365	0.122	0.119	2.30E-05	0.046	1,00E-04	361
0.117778	10:24:20	365	370	0.119	0.118	1.29E-05	0.045	5.71E-05	206
0.115821	10:24:25	370	375	0.118	0.116	1.54E-05	0.045	6.90E-05	248
0.114139	10:24:30	375	380	0.116	0.114	1.32E-05	0.044	6.01E-05	216
0.112192	10:24:35	380	385	0.114	0.112	1,53E-05	0.043	7.05E-05	254
0.110234	10:24:40	385	390	0.112	0.110	1.54E-05	0.043	7.18E-05	259
0.108451	10:24:45	390	395	0.110	0.108	1.40E-05	0.042	6.64E-05	239
0.107238	10:24:50	395	400	0.108	0.107	9.53E-06	0.042	4.57E-05	164
0.105953	10:24:55	400	405	0.107	0.106	1.01E-05	0.041	4.88E-05	176
0.104913	10:25:00	405	410	0.106	0.105	8.17E-06	0.041	3.99E-05	143
0.10317	10:25:05	410	415	0.105	0.103	1.37E-05	0.041	6.75E-05	243
0.102181	10:25:10	415	420	0.103	0.102	7.77E-06	0.040	3.87E-05	139
0.100907	10:25:15	420	425	0.102	0.101	1.00E-05	0.040	5.03E-05	181
0.098981	10:25:20	425	430	0.101	0.099	1.51E-05	0.039	7.71E-05	278
0.098104	10:25:25	430	435	0.099	0.098	6.89E-06	0.039	3.55E-05	128
0.09629	10:25:30	435	440	0.098	0.096	1.43E-05	0.038	7.42E-05	267
0.095229	10:25:35	440	445	0.096	0.095	8.33E-06	0.038	4.39E-05	158
0.094383	10:25:40	445	450	0.095	0.094	6.65E-06	0.038	3.53E-05	127
0.093731	10:25:45	450	455	0.094	0.094	5.12E-06	0.037	2.74E-05	99
0.09159	10:25:50	455	460	0.094	0.092	1.68E-05	0.037	9.10E-05	327
0.090897	10:25:55	460	465	0.092	0.091	5.44E-06	0.037	2.98E-05	107
0.08945	10:26:00	465	470	0.091	0.089	1.14E-05	0.036	6.28E-05	226
0.088532	10:26:05	470	475	0.089	0.089	7.21E-06	0.036	4.02E-05	145
0.087452	10:26:10	475	480	0.089	0.087	8.49E-06	0.035	4.78E-05	172
0.086024	10:26:15	480	485	0.087	0.086	1,12E-05	0.035	6.39E-05	230
0.084964	10:26:20	485	490	0.086	0.085	8.33E-06	0.035	4.80E-05	173
0.083833	10:26:25	490	495	0.085	0.084	8.89E-06	0.034	5.17E-05	186
0.082793	10:26:30	495	500	0.084	0.083	8.17E-06	0.034	4.80E-05	173
0.082141	10:26:35	500	505	0.083	0.082	5.12E-06	0.034	3.04E-05	109
0.080724	10:26:40	505	510	0.082	0.081	1.11E-05	0.033	6.66E-05	240
0.079755	10:26:45	510	515	0.081	0.080	7.61E-06	0.033	4.60E-05	166
0.079021	10:26:50	515	520	0.080	0.079	5.76E-06	0.033	3.52E-05	127
0.078328	10:26:55	520	525	0.079	0.078	5.44E-06	0.033	3.34E-05	120
0.077156	10:27:00	525	530	0.078	0.077	9.21E-06	0.032	5.70E-05	205
0.076514	10:27:05	530	535	0.077	0.077	5.04E-06	0.032	3.15E-05	114
0.07527	10:27:10	535	540	0.077	0.075	9.77E-06	0.032	6.16E-05	222
					0.074	1.04E-05	0.031		239
0.073945	10:27:15	540	545	0.075				6.65E-05	
0.073415	10:27:20	545	550	0.074	0.073	4.16E-06	0.031	2.69E-05	97
0.072141	10:27:25	550	555	0.073	0.072	1.00E-05	0.031	6.52E-05	235
0.071753	10:27:30	555	560	0.072	0.072	3.04E-06	0.030	2.00E-05	72
0.070632	10:27:35	560	565	0.072	0.071	8.81E-06	0.030	5.83E-05	210
0.069939	10:27:40	565	570	0.071	0.070	5.44E-06	0.030	3.64E-05	131
0.069317		570	575	0.070	0.069	4.88E-06	0.030	3.29E-05	118
	10:27:45								
0.068685	10:27:50	575	580	0.069	0.069	4.96E-06	0.030	3.36E-05	121
0.067829	10:27:55	580	585	0.069	0.068	6.73E-06	0.029	4.59E-05	165
0.067197	10:28:00	585	590	0.068	0.067	4.96E-06	0.029	3.42E-05	123
0.06631	10:28:05	590	595	0.067	0.066	6.97E-06	0.029	4.83E-05	174
0.065647	10:28:10	595	600	0.066	0.066	5.20E-06	0.029	3.64E-05	131
0.064954	10:28:15	600	605	0.066	0.065	5.44E-06	0.028	3.84E-05	138
0.064608	10:28:20	605	610	0.065	0.065	2.72E-06	0.028	1.93E-05	69
0.063058	10:28:25	610	615	0.065	0.063	1.22E-05	0.028	8.72E-05	314
0.062548	10:28:30	615	620	0.063	0.063	4.00E-06	0.028	2.90E-05	104
0.061947	10:28:35	620	625	0.063	0.062	4.72E-06	0.027	3.45E-05	124
				0.062	0.061	5.92E-06	0.027	4.36E-05	157
0.061193	10:28:40	625	630						
0.060418	10:28:45	630	635	0.061	0.060	6.08E-06	0.027	4.51E-05	163
0.060316	10:28:50	635	640	0.060	0.060	8.01E-07	0.027	5.97E-06	21
0.059195	10:28:55	640	645	0.060	0.059	8.81E-06	0.027	6.61E-05	238
0.058481	10:29:00	645	650	0.059	0.058	5.60E-06	0.026	4.26E-05	153
0.058124	10:29:05	650	655	0.058	0.058	2.80E-06	0.026	2,14E-05	77
0.057187	10:29:10	655	660	0.058	0.057	7.37E-06	0.026	5.67E-05	204
0.057034	10:29:15	660	665	0.057	0.057	1,20E-06	0.026	9.31E-06	34
0.055953	10:29:20	665	670	0.057	0.056	8.49E-06	0.026	6.63E-05	239
0.055525	10:29:25	670	675	0.056	0.056	3.36E-06	0.025	2,65E-05	95
0.054893	10:29:30	675	680	0.056	0.055	4.96E-06	0.025	3.94E-05	142
0.054434	10:29:35	680	685	0.055	0.054	3.60E-06	0.025	2,88E-05	104
0.053639	10:29:40	685	690	0.054	0.054	6,24E-06	0.025	5.03E-05	181
0.053048	10:29:45	690	695	0.054	0.053	4.64E-06	0.025	3.77E-05	136
0.000040	10.25.40	090	090	0.054	0.033	4,04L-00	0.023	3.772-03	130

0.052212	10:29:50	695	700	0.053	0.052	6.56E-06	0.024	5.38E-05	194
0.05208	10:29:55	700	705	0.052	0.052	1.04E-06	0.024	8.59E-06	31
0.051631	10:30:00	705	710	0.052	0.052	3.52E-06	0.024	2.92E-05	105
0.051284	10:30:05	710	715	0.052	0.051	2.72E-06	0.024	2.27E-05	82
									92
0.050897	10:30:10	715	720	0.051	0.051	3.04E-06	0.024	2.55E-05	
0.049806	10:30:15	720	725	0.051	0.050	8.57E-06	0.024	7.24E-05	261
0.04945	10:30:20	725	730	0.050	0.049	2.80E-06	0.023	2.39E-05	86
0.048736	10:30:25	730	735	0.049	0.049	5.60E-06	0.023	4.82E-05	173
0.04842	10:30:30	735	740	0.049	0.048	2.48E-06	0.023	2.15E-05	77
									115
0.047951	10:30:35	740	745	0.048	0.048	3.68E-06	0.023	3.20E-05	
0.047472	10:30:40	745	750	0.048	0.047	3.76E-06	0.023	3.29E-05	119
0.046799	10:30:45	750	755	0.047	0.047	5.28E-06	0.023	4.66E-05	168
0.046412	10:30:50	755	760	0.047	0.046	3.04E-06	0.022	2.70E-05	97
0.045994	10:30:55	760	765	0.046	0.046	3.28E-06	0.022	2,93E-05	106
0.045739	10:31:00	765	770	0.046	0.046	2.00E-06	0.022	1,80E-05	65
0.045392	10:31:05	770	775	0.046	0.045	2.72E-06	0.022	2,46E-05	88
0.044801	10:31:10	775	780	0.045	0.045	4.64E-06	0.022	4.22E-05	152
0.044383	10:31:15	780	785	0.045	0.044	3.28E-06	0.022	3.00E-05	108
0.044027	10:31:20	785	790	0.044	0.044	2.80E-06	0.022	2.58E-05	93
0.043221	10:31:25	790	795	0.044	0.043	6.32E-06	0.022	5.87E-05	211
		795		0.043	0.043		0.021		11
0.04318	10:31:30		800			3.20E-07		2.99E-06	
0.043272	10:31:35	800	805	0.043	0.043	-7.21E-07	0.021	-6.72E-06	-24
0.042599	10:31:40	805	810	0.043	0.043	5.28E-06	0.021	4.95E-05	178
0.041886	10:31:45	810	815	0.043	0.042	5.60E-06	0.021	5.31E-05	191
0.041947	10:31:50	815	820	0.042	0.042	-4.80E-07	0.021	-4.57E-06	-16
0.041305	10:31:55	820	825	0.042	0.041	5.04E-06	0,021	4.82E-05	174
0.040591	10:32:00	825	830	0.041	0.041	5.60E-06	0.021	5.41E-05	195
0.041009	10:32:05	830	835	0.041	0.041	-3.28E-06	0.021	-3.18E-05	-114
0.03999	10:32:10	835	840	0.041	0.040	8.01E-06	0.021	7.78E-05	280
0.040051	10:32:15	840	845	0.040	0.040	-4.80E-07	0.020	-4.70E-06	-17
0.039174	10:32:20	845	850	0.040	0.039	6.89E-06	0.020	6.78E-05	244
0.03841	10:32:25	850	855	0.039	0.038	6.00E-06	0.020	5.99E-05	216
0.038135	10:32:30	855	860	0.038	0.038	2.16E-06	0.020	2.17E-05	78
0.038165	10:32:35	860	865	0.038	0.038	-2.40E-07	0.020	-2.42E-06	-9
0.037971	10:32:40	865	870	0.038	0.038	1.52E-06	0.020	1.54E-05	55
0.037278	10:32:45	870	875	0.038	0.037	5.44E-06	0.020	5.53E-05	199
0.036544	10:32:50	875	880	0.037	0.037	5.76E-06	0.019	5.93E-05	213
0.036269	10:32:55	880	885	0.037	0.036	2,16E-06	0.019	2,24F-05	81
0.035933	10:33:00	885	890	0.036	0.036	2.64E-06	0.019	2.75E-05	99
0.035729	10:33:05	890	895	0.036	0.036	1,60F-06	0.019	1,68F-05	60
0.035311	10:33:10	895	900	0.036	0.035	3.28E-06	0.019	3.45E-05	124
0.034924	10:33:15	900	905	0.035	0.035	3.04E-06	0.019	3.22E-05	116
0.034343	10:33:20	905	910	0.035	0.034	4.56E-06	0.019	4.87E-05	175
0.034343	10:33:25	910	915	0.034	0.034	0.00E+00	0.019	0.00E+00	0
0.033884	10:33:30	915	920	0.034	0.034	3.60E-06	0.019	3.88E-05	140
0.033435	10:33:35	920	925	0.034	0.033	3.52E-06	0.018	3.82E-05	138
0.03314	10:33:40	925	930	0.033	0.033	2.32E-06	0.018	2.54E-05	91
0.032793	10:33:45	930	935	0.033	0.033	2.72E-06	0.018	2.99E-05	108
0.032538	10:33:50	935	940	0.033	0.033	2.00E-06	0.018	2.21E-05	80
0.03209	10:33:55	940	945	0.033	0.032	3.52E-06	0.018	3.91E-05	141
0.031611	10:34:00	945	950	0.032	0.032	3.76E-06	0.018	4.21E-05	152
0.031203	10:34:05	950	955	0.032	0.031	3,20E-06	0.018	3.61E-05	130
0.031162	10:34:10	955	960	0.031	0.031	3.20E-07	0.018	3.63E-06	13
0.031019	10:34:15	960	965	0.031	0.031	1.12E-06	0.018	1.27E-05	46
0.030459	10:34:20	965	970	0.031	0.030	4.40E-06	0.018	5.03E-05	181
0.029929	10:34:25	970	975	0.030	0.030	4.16E-06	0.017	4.80E-05	173
0.029867	10:34:30	975	980	0.030	0.030	4.80E-07	0.017	5.57E-06	20
0.02949	10:34:35	980	985	0.030	0.029	2.96E-06	0.017	3.45E-05	124
0.029103	10:34:40	985	990	0.029	0.029	3.04E-06	0.017	3.57E-05	128
0.028583	10:34:45	990	995	0.029	0.029	4.08E-06	0.017	4.83E-05	174
0.028236	10:34:50	995	1000	0.029	0.028	2.72E-06	0.017	3.24E-05	117
0.027717	10:34:55	1000	1005	0.028	0.028	4.08E-06	0.017	4.91E-05	177
0.027441	10:35:00	1005	1010	0.028	0.027	2.16E-06	0.017	2.62E-05	94
0.026993	10:35:05	1010	1015	0.027	0.027	3.52E-06	0.016	4.29E-05	155
0.026738	10:35:10	1015	1020	0.027	0.027	2.00E-06	0.016	2.46E-05	88
0.026432	10:35:15	1020	1025	0.027	0.026	2,40E-06	0.016	2.96E-05	107
0.026045	10:35:20	1025	1030	0.026	0.026	3.04E-06	0.016	3.78E-05	136
0.025831	10:35:25	1030	1035	0.026	0.026	1,68E-06	0.016	2.10E-05	76
0.026004	10:35:30	1035	1040	0.026	0.026	-1.36E-06	0.016	-1.70E-05	-61
0.025403	10:35:35	1040	1045	0.026	0.025	4.72E-06	0.016	5.93E-05	214
0.02527	10:35:40	1045	1050	0.025	0.025	1.04E-06	0.016	1.32E-05	47
0.025168	10:35:45	1050	1055	0.025	0.025	8.01E-07	0.016	1,01E-05	37
0.024353	10:35:50	1055	1060	0.025	0.024	6.40E-06	0.016	8,19E-05	295
0.023945	10:35:55	1060	1065	0.024	0.024	3,20E-06	0.015	4.15E-05	149
0.024149	10:36:00	1065	1070	0.024	0.024	-1.60E-06	0.015	-2.08E-05	-75
0.023843	10:36:05	1070	1075	0.024	0.024	2,40E-06	0.015	3.12E-05	112

0.023456	10:36:10	1075	1080	0.024	0.023	3.04E-06	0.015	3.98E-05	143
0.023231	10:36:15	1080	1085	0.023	0.023	1.76E-06	0.015	2.32E-05	84
0.022875	10:36:20	1085	1090	0.023	0.023	2.80E-06	0.015	3.71E-05	134
0.022334	10:36:25	1090	1095	0.023	0.022	4.24E-06	0.015	5.67E-05	204
0.022059	10:36:30	1095	1100	0.022	0.022	2.16E-06	0.015	2.92E-05	105
0.021865	10:36:35	1100	1105	0.022	0.022	1.52E-06	0.015	2.06E-05	74
0.021335	10:36:40	1105	1110	0.022	0.021	4.16E-06	0.015	5.69E-05	205
0.021101	10:36:45	1110	1115	0.021	0.021	1.84E-06	0.015	2,54E-05	91
0.021223	10:36:50	1115	1120	0.021	0.021	-9.61E-07	0.015	-1.32E-05	-48
0.021376	10:36:55	1120	1125	0.021	0.021	-1.20E-06	0.015	-1.65E-05	-59
0.021019	10:37:00	1125	1130	0.021	0.021	2.80E-06	0.015	3.86E-05	139
0.020612	10:37:05	1130	1135	0.021	0.021	3.20E-06	0.014	4.45E-05	160
0.020275	10:37:10	1135	1140	0.021	0.020	2.64E-06	0.014	3.70E-05	133
0.019898	10:37:15	1140	1145	0.020	0.020	2.96E-06	0.014	4.18E-05	151
0.019582	10:37:20	1145	1150	0.020	0.020	2.48E-06	0.014	3.53E-05	127
0.019429	10:37:25	1150	1155	0.020	0.019	1.20E-06	0.014	1,72E-05	62
0.018991	10:37:30	1155	1160	0.019	0.019	3.44E-06	0.014	4.96E-05	178
0.01897	10:37:35	1160	1165	0.019	0.019	1.60E-07	0.014	2,32E-06	8
0.01792	10:37:40	1165	1170	0.019	0.018	8.25E-06	0.014	1.21E-04	435
0.020255	10:37:45	1170	1175	0.018	0.020	-1.83E-05	0.014	-2.65E-04	-953
0.019083	10:37:50	1175	1180	0.020	0.019	9.21E-06	0.014	1.31E-04	472
0.018196	10:37:55	1180	1185	0.019	0.018	6.97E-06	0.014	1.02E-04	366
0.010100	10.01.00	1100	1100	01010	TEST		. 70.70	Alona o I	
		_							
0.308981	10:38:40	0		warmen live research	-	y wantile was		Participation and a second	W. Dinger
0.275454	10:38:45	0	5	0.30898063	0.27545362	2.63E-04	0.100	5.28E-04	1902
0.256911	10:38:50	5	10	0.27545362	0.25691131	1.46E-04	0.091	3.18E-04	1146
0.243965	10:38:55	10		0.25691131		1.02E-04	0.087	2.35E-04	846
0.23474	10:39:00	15	20	0.24396534	0.23474006	7.25E-05	0.083	1.74E-04	628
0.226789	10:39:05	20	25	0.23474006	0.22678899	6.24E-05	0.080	1.55E-04	560
0.219337	10:39:10	25	30	0.22678899	0.21933741	5.85E-05	0.078	1.50E-04	541
0.213282	10:39:15	30	35	0.21933741	0.21328236	4.76E-05	0.076	1.25E-04	452
0.208094	10:39:20	35	40	0.21328236	0.20809378	4.08E-05	0.074	1,10E-04	396
0.202579	10:39:25	40	45	0.20809378	0.202579	4.33E-05	0.072	1.20E-04	431
0.198114		45							
	10:39:30		50		0.19811417	3.51E-05	0.071	9.91E-05	357
0.194169	10:39:35	50	55	0.19811417	0.19416922	3.10E-05	0.069	8.92E-05	321
0.189878	10:39:40	55	60	0.19416922	0.18987768	3.37E-05	0.068	9.89E-05	356
0.186707	10:39:45	60	65	0.18987768	0.18670744	2.49E-05	0.067	7.43E-05	268
0.182783	10:39:50	65	70	0.18670744	0.18278287	3.08E-05	0.066	9.36E-05	337
0.179633	10:39:55	70	75	0.18278287	0.17963303	2.47E-05	0.065	7.64E-05	275
0.17632	10:40:00	75	80	0.17963303	0.17632008	2.60E-05	0.064	8.16E-05	294
0.17366	10:40:05	80	85	0.17632008	0.17365953	2.09E-05	0.063	6.65E-05	239
0.170989	10:40:10	85	90	0.17365953	0.17098879	2.10E-05	0.062	6.77E-05	244
0.168828	10:40:15	90	95	0.17098879	0.16882773	1.70E-05	0.061	5.54E-05	200
0.166453	10:40:20	95	100	0.16882773	0.1664526	1.87E-05	0.061	6.16E-05	222
0.164475	10:40:25	100	105	0.1664526	0.16447503	1.55E-05	0.060	5.19E-05	187
0.162742	10:40:30	105	110	0.16447503	0.1627421	1.36E-05	0.059	4.59E-05	165
0.161203	10:40:35	110	115	0.1627421	0.16120285	1.21E-05	0.059	4.12E-05	148
0.159164	10:40:40	115	120	0.16120285	0.15916412	1.60E-05	0.058	5.50E-05	198
0.157604	10:40:45	120		0.15916412	0.15760449	1.22E-05	0.058	4.25E-05	153
0.15577	10:40:50	125	130	0.15760449	0.15576962	1.44E-05	0.057	5.05E-05	182
0.154271	10:40:55	130	135	0.15576962	0.15427115	1.18E-05	0.057	4.16E-05	150
0.152457	10:41:00	135	1,000,00	0.15427115		1.43E-05	0.056	5.09E-05	183
0.151131	10:41:05	140		0.15245668	0.1511315	1.04E-05	0.056	3.75E-05	135
0.149541	10:41:10	145	150	0.1511315	0.14954128	1.25E-05	0.055	4.53E-05	163
0.14792	10:41:15	150	155	0.14954128	0.14792049	1.27E-05	0.055	4.66E-05	168
0.14633	10:41:20	155		0.14792049		1,25E-05	0.054	4.62E-05	166
0.144975	10:41:25	160		0.14633028		1.06E-05	0.054	3.97E-05	143
0.143619	10:41:30	165	170	0.14497452	0.14361876	1.06E-05	0.053	4.00E-05	144
0.142222	10:41:35	170	175	0.14361876	0.14222222	1.10E-05	0.053	4.16E-05	150
0.140724	10:41:40	175		0.14222222		1.18E-05	0.052	4.50E-05	162
0.139134	10:41:45	180		0.14072375		1.25E-05	0.052	4.82E-05	174
0.137554	10:41:50	185	190	0.13913354	0.13755352	1.24E-05	0.051	4.84E-05	174
0.135933	10:41:55	190	195	0.13755352	0.13593272	1.27E-05	0.051	5.01E-05	180
0.135219				0.13593272					
	10:42:00	195				5.60E-06	0.050	2.22E-05	80
0.133904	10:42:05	200	205	0.13521916	0.13390418	1.03E-05	0.050	4.12E-05	148
0.132834	10:42:10	205	210	0.13390418	0.13283384	8.41E-06	0.050	3.38E-05	122
0.13159	10:42:15	210		0.13283384		9.77E-06	0.049	3.96E-05	142
0.130449	10:42:20	215		0.13159021		8.97E-06	0.049	3.66E-05	132
0.129429	10:42:25	220	225	0.13044852	0.12942915	8.01E-06	0.049	3.29E-05	118
0.128073	10:42:30	225		0.12942915		1.06E-05	0.048	4.41E-05	159
0.127554	10:42:35	230		0.12807339		4.08E-06	0.048	1.70E-05	61
0.126259	10:42:40	235	240	0.12755352	0.12625892	1.02E-05	0.048	4.26E-05	153
0.124934	10:42:45	240	245	0.12625892	0.12493374	1.04E-05	0.047	4.40E-05	158
0.123965	10:42:50	245		0.12493374		7.61E-06	0.047	3.24E-05	117
0.122661	10:42:55	250		0.12396534		1.02E-05	0.047	4.40E-05	158
0.122171	10:43:00	255	260	0.12266055	0.12217125	3.84E-06	0.046	1.66E-05	60

10111012200	592E399E39EE	10/0/08	200						
0.121091	10:43:05	260	265	0.12217125	0.12109072	8.49E-06	0.046	3.68E-05	133
0.120061	10:43:10	265	270	0.12109072	0.12006116	8.09E-06	0.046	3.54E-05	127
0.119011	10:43:15	270	275	0.12006116	0.11901121	8.25E-06	0.045	3.63E-05	131
0.118002	10:43:20	275	280	0.11901121	0.11800204	7.93E-06	0.045	3.52E-05	127
0.117462	10:43:25	280	285	0.11800204	0.11746177	4.24E-06	0.045	1.89E-05	68
0.116493	10:43:30	285	290		0.11649337	7.61E-06	0.045	3.41E-05	123
0.115413	10:43:35	290	295	0.11649337	0.11541284	8.49E-06	0.044	3.83E-05	138
0.114771	10:43:40	295	300	0.11541284	0.11477064	5.04E-06	0.044	2.29E-05	83
0.113751	10:43:45	300	305	0.11477064	0.11375127	8.01E-06	0.044	3.66E-05	132
0.113099	10:43:50	305	310	0.11375127	0.11309888	5.12E-06	0.043	2.36E-05	85
0.11263	10:43:55	310	315	0.11309888	0.11262997	3.68E-06	0.043	1.70E-05	61
0.11263									
	10:44:00	315	320	0.11262997	0.112263	2,88E-06	0.043	1.33E-05	48
0.111325	10:44:05	320	325	0.112263	0.11132518	7.37E-06	0.043	3.43E-05	123
0.110612	10:44:10	325	330	0.11132518	0.11061162	5.60E-06	0.043	2.62E-05	94
0.109664	10:44:15	330	335	0.11061162	0.10966361	7.45E-06	0.042	3.51E-05	126
0.108624	10:44:20	335	340	0.10966361	0.10862385	8.17E-06	0.042	3.88E-05	140
0.107717	10:44:25	340	345		0.10771662	7.13E-06	0.042	3.41E-05	123
0.107462	10:44:30	345	350	0.10771662	0.10746177	2.00E-06	0.042	9.61E-06	35
0.106707	10:44:35	350	355	0.10746177	0.10670744	5.92E-06	0.041	2.86E-05	103
0.105841	10:44:40	355	360	0.10670744	0.10584098	6.81E-06	0.041	3.30E-05	119
0.105392	10:44:45	360	365	0.10584098	0.10539246	3.52E-06	0.041	1.72E-05	62
0.104924	10:44:50	365	370	0.10539246	0.10492355	3.68E-06	0.041	1.80E-05	65
0.104444	10:44:55	370	375	0.10492355	0.1044444	3.76E-06	0.041	1.85E-05	66
0.103303	10:45:00	375	380	0.10444444	0.10330275	8.97E-06	0.040	4.43E-05	159
0.102956	10:45:05	380			0.10295617	2.72E-06	0.040		49
								1.35E-05	
0.102701	10:45:10	385	390	0.10295617	0.10270133	2.00E-06	0.040	9.97E-06	36
0.102253	10:45:15	390	395	0.10270133	0.1022528	3.52E-06	0.040	1.76E-05	63
0.101651	10:45:20	395	400	0.1022528	0.10165138	4.72E-06	0.040	2.37E-05	85
0.10104	10:45:25	400	405	0.10165138	0.10103976	4.80E-06	0.040	2.42E-05	87
0.09999	10:45:30	405	410	0.10103976	0.09998981	8.25E-06	0.039	4.18E-05	151
0.099439	10:45:35	410	33333	0.09998981	0.09943935	4.32E-06	0.039	2.21E-05	79
0.099164	10:45:40	415	420	0.09943935	0.09916412	2.16E-06	0.039	1.11E-05	40
0.098216	10:45:45	420	425	0.09916412	0.09821611	7.45E-06	0.039	3.83E-05	138
0.097431	10:45:50	425	430	0.09821611	0.09743119	6.16E-06	0.039	3.20E-05	115
0.097095	10:45:55	430	435	0.09743119	0.0970948	2.64E-06	0.038	1.38E-05	50
0.096096	10:46:00	435	440	0.0970948	0.09609582	7.85E-06	0.038	4.11E-05	148
0.095933	10:46:05	440	445	0.09609582	0.09593272	1.28E-06	0.038	6.74E-06	24
0.095454	10:46:10	445	450	0.09593272	0.09545362	3.76E-06	0.038	1.98E-05	71
0.09476	10:46:15	450	455	0.09545362	0.09476045	5.44E-06	0.038	2.89E-05	104
0.093935	10:46:20	455	460	0.09476045	0.09393476	6.48F-06	0.037	3.46F-05	125
0.092875	10:46:25	460	465	0.09393476	0.09287462	8.33E-06	0.037	4.48E-05	161
0.091998	10:46:30	465	470	0.09287462	0.09199796	6.89E-06	0.037	3.73E-05	134
0.091488	10:46:35	470	475	0.09199796	0.09148828	4.00E-06	0.037	2.18E-05	79
0.090571	10:46:40	475	480	0.09148828	0.09057085	7.21E-06	0.036	3.95E-05	142
0.089276	10:46:45	480	485	0.09057085	0.08927625	1.02E-05	0.036	5.63E-05	203
0.088981	10:46:50	485	490			2.32E-06			47
		5.35575	177707	0.08927625	0.08898063		0.036	1.30E-05	
0.088206	10:46:55	490	495	0.08898063	0.08820591	6.08E-06	0.036	3.41E-05	123
0.087054	10:47:00	495	500	0.08820591	0.08705403	9.05E-06	0.035	5.11E-05	184
0.086371	10:47:05	500	505	0.08705403	0.08637105	5,36E-06	0.035	3.06E-05	110
0.0858	10:47:10	505	510	0.08637105	0.0858002	4.48E-06	0.035	2.57E-05	92
0.084852	10:47:15	510	515	0.0858002	0.08485219	7.45E-06	0.035	4.30E-05	155
0.084383	10:47:20	515	520	0.08485219	0.08438328	3.68E-06	0.034	2.14E-05	77
0.083588	10:47:25	520		0.08438328		6.24E-06	0.034	3.65E-05	131
0.082834	10:47:30	525		0.08358818			0.034		125
						5.92E-06		3.49E-05	
0.081978	10:47:35	530		0.08283384		6.73E-06	0.034	3.99E-05	144
0.081274	10:47:40	535		0.08197757		5.52E-06	0.033	3.30E-05	119
0.080948	10:47:45	540	545	0.08127421	0.08094801	2.56E-06	0.033	1.54E-05	55
0.080102	10:47:50	545	550	0.08094801	0.08010194	6.65E-06	0.033	4.01E-05	144
0.079776	10:47:55	550	555	0.08010194	0.07977574	2.56E-06	0.033	1.55E-05	56
0.079032	10:48:00	555	560	0.07977574	0.0790316	5.84E-06	0.033	3.56E-05	128
0.078552	10:48:05	560	565	0.0790316	0.0785525	3.76E-06	0.033	2.31E-05	83
0.078206	10:48:10	565	570		0.07820591	2.72E-06			
							0.032	1.68E-05	60
0.077645	10:48:15	570		0.07820591		4.40E-06	0.032	2.72E-05	98
0.076463	10:48:20	575		0.07764526		9.29E-06	0.032	5.79E-05	209
0.076075	10:48:25	580	585	0.07646279	0.07607543	3.04E-06	0.032	1.91E-05	69
0.076045	10:48:30	585	590	0.07607543	0.07604485	2.40E-07	0.032	1.51E-06	5
0.075607	10:48:35	590	595	0.07604485	0.07560652	3.44E-06	0.032	2.17E-05	78
0.074924	10:48:40	595		0.07560652		5.36E-06	0.031	3.41E-05	123
0.074669	10:48:45	600		0.07492355		2.00E-06	0.031	1.28E-05	46
0.074128	10:48:50	605		0.07466871		4.24E-06	0.031	2.72E-05	98
0.07367	10:48:55	610		0.07412844		3.60E-06	0.031	2.32E-05	83
0.072997	10:49:00	615		0.07366972		5.28E-06	0.031	3.42E-05	123
0.07262	10:49:05	620	625	0.07299694	0.07261978	2.96E-06	0.031	1.93E-05	69
0.072334	10:49:10	625	630	0.07261978	0.07233435	2.24E-06	0.031	1.46E-05	53
0.071825	10:49:15	630		0.07233435		4.00E-06	0.030	2.63E-05	95
0.071468	10:49:20	635		0.07182467		2.80E-06	0.030	1.85E-05	66
		•••	0.10		2121212121				

		222	0000	2210110222	20002020	1233232	17672023	- 1000 CO	92.10
0.071376	10:49:25	640		0.07146789		7.21E-07	0.030	4.76E-06	17
0.070866	10:49:30	645	650	0.07137615	0.07086646	4.00E-06	0.030	2.65E-05	95
0.070499	10:49:35	650	655	0.07086646	0.07049949	2.88E-06	0.030	1.92E-05	69
0.070061	10:49:40	655	660	0.07049949	0.07006116	3.44E-06	0.030	2.30E-05	83
0.069348	10:49:45	660	665	0.07006116	0.0693476	5.60E-06	0.030	3.77E-05	136
0.069246	10:49:50	665	670	0.0693476	0.06924567	8.01E-07	0.030	5.41E-06	19
0.068807	10:49:55	670	675	0.06924567	0.06880734	3.44E-06	0.030	2.33E-05	84
0.068338	10:50:00	675	680	0.06880734	0.06833843	3.68E-06	0.029	2,51E-05	90
0.067951	10:50:05	680	685	0.06833843	0.06795107	3.04E-06	0.029	2.08E-05	75
0.067574	10:50:10	685	690	0.06795107	0.0675739	2.96E-06	0.029	2.03E-05	73
0.067431	10:50:15	690	695	0.0675739	0.06743119	1.12E-06	0.029	7.71E-06	28
0.067136	10:50:20	695	700	0.06743119	0.06713558	2,32E-06	0.029	1.60E-05	58
0.066606	10:50:25	700	705	0.06713558	0.0666055	4.16E-06	0.029	2.88E-05	104
0.066055	10:50:30	705	710	0.0666055	0.06605505	4.32E-06	0.029	3.01E-05	108
0.066065	10:50:35	710	715	0.06605505	0.06606524	-8.01E-08	0.029	-5.60E-07	-2
0.065688	10:50:40	715	720	0.06606524	0.06568807	2.96E-06	0.029	2.08E-05	75
0.06525	10:50:45	720	725	0.06568807	0.06524975	3.44E-06	0.028	2.42E-05	87
0.06476	10:50:50	725	730	0.06524975	0.06476045	3.84E-06	0.028	2.72E-05	98
0.06475	10:50:55	730	735	0.06476045	0.06475025	8.01E-08	0.028	5.68E-07	2
0.064455	10:51:00	735	740	0.06475025	0.06445464	2.32E-06	0.028	1.65E-05	59
0.064027	10:51:05	740	745	0.06445464	0.0640265	3.36E-06	0.028	2.40E-05	86
0.063639	10:51:10	745	750	0.0640265	0.06363914	3.04E-06	0.028	2.18E-05	78
0.063191	10:51:15	750	755	0.06363914	0.06319062	3.52E-06	0.028	2.54E-05	91
0.063089	10:51:10	755	760	0.06319062	0.06308869	8.01E-07	0.028	5.78E-06	21
0.062742	10:51:25	760	765	0.06308869	0.0627421	2.72E-06	0.028	1.97E-05	71
0.062294	10:51:30	765	770	0.0627421	0.06229358	3.52E-06	0.027	2.56E-05	92
0.061937	10:51:35	770	775	0.06229358	0.0619368	2.80E-06	0.027	2.05E-05	74
0.061814	10:51:40	775	780	0.0619368	0.06181448	9.61E-07	0.027	7.04E-06	25
0.061651	10:51:45	780	785	0.06181448	0.06165138	1.28E-06	0.027	9.40E-06	34
0.061019	10:51:50	785	790	0.06165138	0.06101937	4.96E-06	0.027	3.66E-05	132
0.060979	10:51:55	790	795	0.06101937	0.06097859	3.20E-07	0.027	2.37E-06	9
0.06052	10:52:00	795	800	0.06097859	0.06051988	3.60E-06	0.027	2,67E-05	96
0.060224	10:52:05	800	805	0.06051988	0.06022426	2.32E-06	0.027	1.73E-05	62
0.059929	10:52:10	805	810	0.06022426	0.05992864	2.32E-06	0.027	1.74E-05	63
0.059827	10:52:15	810		0.05992864	0.05982671	8.01E-07	0.027	6.00E-06	22
0.059185	10:52:10	815	820	0.05982671	0.05918451	5.04E-06	0.027	3.80E-05	137
		820							
0.059297	10:52:25		825	0.05918451	0.05929664	-8.81E-07	0.026	-6.66E-06	-24
0.05894	10:52:30	825	830	0.05929664	0.05893986	2.80F-06	0.026	2.12E-05	76
0.058828	10:52:35	830	835	0.05893986	0.05882773	8.81E-07	0.026	6.68E-06	24
0.057961	10:52:40	835	840	0.05882773	0.05796126	6.81F-06	0.026	5.19F-05	187
0.058155	10:52:45	840	845	0.05796126	0.05815494	-1.52E-06	0.026	-1.17E-05	-42
0.057676	10:52:50	845	850	0.05815494	0.05767584	3.76E-06	0.026	2.89E-05	104
0.057431	10:52:55	850	855	0.05767584	0.05743119	1.92E-06	0.026	1.48E-05	53
0.057452	10:53:00	855	860	0.05743119	0.05745158	-1.60E-07	0.026	-1.24E-06	-4
0.057176	10:53:05	860	865	0.05745158	0.05717635	2.16E-06	0.026	1.67E-05	60
0.056769	10:53:10	865	870	0.05717635	0.0567686	3.20E-06	0.026	2.49E-05	90
0.056442	10:53:15	870	875	0.0567686	0.05644241	2.56E-06	0.026	2.00E-05	72
0.056279	10:53:20	875	880	0.05644241	0.05627931	1.28E-06	0.026	1.00E-05	36
0.055607	10:53:25	880	885	0.05627931	0.05560652	5.28E-06	0.025	4.16E-05	150
0.055647	10:53:30	885	890	0.05560652	0.0556473	-3.20E-07	0.025	-2.53E-06	-9
0.055199	10:53:35	890	895	0.0556473	0.05519878		0.025		100
						3.52E-06		2.79E-05	
0.055117	10:53:40	895	900	0.05519878	0.05511723	6.40E-07	0.025	5.09E-06	18
0.054995	10:53:45	900		0.05511723	0.0549949	9.61E-07	0.025	7.64E-06	28
0.054669	10:53:50	905	910		0.05466871	2.56E-06	0.025	2.04E-05	74
0.054781	10:53:55	910		0.05466871		-8.81E-07	0.025	-7.03E-06	-25
0.054139	10:54:00	915		0.05478084		5.04E-06	0.025	4.04E-05	145
0.053833	10:54:05	920		0.05413863		2.40E-06	0.025	1.94E-05	70
0.053955	10:54:10	925	930	0.05383282	0.05395515	-9.61E-07	0.025	-7.75E-06	-28
0.053782	10:54:15	930	935	0.05395515	0.05378186	1.36E-06	0.025	1.10E-05	40
0.05318	10:54:20	935	940	0.05378186	0.05318043	4.72E-06	0.025	3.83E-05	138
0.052966	10:54:25	940	945	0.05318043	0.05296636	1.68E-06	0.025	1.37E-05	49
0.052416	10:54:30	945	950	0.05296636	0.0524159	4.32E-06	0.024	3.54E-05	128
0.052171	10:54:35	950	955	0.0524159	0.05217125	1.92E-06	0.024	1.58E-05	57
0.052171	10:54:40	955		0.05217125		0.00E+00	0.024	0.00E+00	0
0.051509	10:54:45	960		0.05217125		5.20E-06	0.024	4.31E-05	155
0.051509	10:54:50	965		0.05150866		0.00E+00	0.024	0.00E+00	0
0.05103	10:54:55	970						3.14E-05	
				0.05150866		3.76E-06	0.024		113
0.050826	10:55:00	975	980	0.05102956		1.60E-06	0.024	1,34E-05	48
0.050571	10:55:05	980		0.05082569		2.00E-06	0.024	1.68E-05	61
0.050296	10:55:10	985		0.05057085		2.16E-06	0.024	1.82E-05	66
0.050102	10:55:15	990		0.05029562		1.52E-06	0.024	1.29E-05	46
0.04949	10:55:20	995	1000	0.05010194	0.04949032	4.80E-06	0.023	4.09E-05	147
0.049419	10:55:25	1000	1005	0.04949032	0.04941896	5.60E-07	0.023	4.79E-06	17
0.049072	10:55:30	1005	1010	0.04941896	0.04907238	2.72E-06	0.023	2,33E-05	84
0.048869	10:55:35	1010	1015	0.04907238	0.0488685	1,60E-06	0.023	1.38E-05	50
0.048665	10:55:40	1015	1020		0.04866463	1.60E-06	0.023	1,38E-05	50

12/12/12/12/12	19020000000	10222	10.000	te fer de Verdeur	are restricted	100000000000000000000000000000000000000	1755740025	-10200000	(3.22)
0.048022	10:55:45	1020		0.04866463		5.04E-06	0.023	4.38E-05	158
0.047951	10:55:50	1025	1030	0.04802243	0.04795107	5.60E-07	0.023	4.89E-06	18
0.047574	10:55:55	1030	1035	0.04795107	0.0475739	2.96E-06	0.023	2.59E-05	93
0.046871	10:56:00	1035	1040	0.0475739	0.04687054	5.52E-06	0.023	4.87E-05	175
0.046748	10:56:05	1040	1045	0.04687054	0.04674822	9.61E-07	0.023	8.52E-06	31
0.046453	10:56:10	1045	1050	0.04674822	0.0464526	2.32E-06	0.022	2.06E-05	74
0.046249	10:56:15	1050	1055	0.0464526	0.04624873	1.60E-06	0.022	1.43E-05	51
0.046177	10:56:20	1055	1060		0.04617737	5.60E-07	0.022	5.01E-06	18
0.045872	10:56:25	1060	1065	0.04617737	0.04587156	2.40E-06	0.022	2.15E-05	78
0.04577	10:56:30	1065							26
				0.04587156	0.04576962	8.01E-07	0.022	7.20E-06	
0.045138	10:56:35	1070		0.04576962	0.04513761	4.96E-06	0.022	4.49E-05	161
0.04472	10:56:40	1075	1080	0.04513761	0.04471967	3.28E-06	0.022	2.99E-05	108
0.044281	10:56:45	1080		0.04471967	0.04428135	3.44E-06	0.022	3.15E-05	114
0.044587	10:56:50	1085	1090	0.04428135	0.04458716	-2.40E-06	0.022	-2,20E-05	-79
0.044271	10:56:55	1090	1095	0.04458716	0.04427115	2.48E-06	0.022	2.28E-05	82
0.043925	10:57:00	1095	1100	0.04427115	0.04392457	2.72E-06	0.022	2,51E-05	90
0.04371	10:57:05	1100	1105	0.04392457	0.0437105	1.68E-06	0.022	1.56E-05	56
0.04367	10:57:10	1105	1110	0.0437105	0.04366972	3.20E-07	0.022	2.97E-06	11
0.043028	10:57:15	1110	1115	0.04366972	0.04302752	5.04E-06	0.021	4.70E-05	169
0.043231	10:57:20	1115	1120	0.04302752	0.0432314	-1.60E-06	0.021	-1.50E-05	-54
0.04314	10:57:25	1120	1125	0.0432314	0.04313965	7.21E-07	0.021	6.73E-06	24
0.042824	10:57:30	1125	1130		0.04282365	2.48E-06	0.021	2.32E-05	84
0.042681	10:57:35	1130			0.04262363				
	10:57:35				0.04268094	1.12E-06	0.021	1.05E-05	38
0.042304		1135	1140			2.96E-06	0.021	2.79E-05	101
0.041407	10:57:45	1140		0.04230377		7.05E-06	0.021	6.71E-05	242
0.041152	10:57:50	1145	1150		0.04115189	2.00E-06	0.021	1.92E-05	69
0.041101	10:57:55	1150		0.04115189	0.04110092	4.00E-07	0.021	3.85E-06	14
0.040724	10:58:00	1155	1160	0.04110092	0.04072375	2.96E-06	0.021	2.86E-05	103
0.040734	10:58:05	1160	1165	0.04072375	0.04073394	-8.01E-08	0.021	-7.75E-07	-3
0.040316	10:58:10	1165	1170	0.04073394	0.040316	3.28E-06	0.021	3.19E-05	115
0.040306	10:58:15	1170	1175	0.040316	0.04030581	8.01E-08	0.021	7.80E-07	3
0.039715	10:58:20	1175	1180	0.04030581		4.64E-06	0.020	4.55E-05	164
0.039562	10:58:25	1180	1185		0.03956167	1.20E-06	0.020	1.18E-05	43
0.039205	10:58:30	1185	1190	0.03956167	0.03920489	2.80E-06	0.020	2,77E-05	100
0.039195	10:58:35	1190		0.03930107	0.0391947	8.01E-08	0.020	7.94E-07	3
0.038675	10:58:40	1195	1200		0.03867482	4.08E-06	0.020	4.07E-05	146
0.038603	10:58:45	1200		0.03867482	0.03860347	5.60E-07	0.020	5.61E-06	20
0.038216	10:58:50	1205		0.03860347	0.03821611	3.04E-06	0.020	3.05F-05	110
0.038328	10:58:55	1210			0.03832824	-8.81E-07	0.020	-8.86E-06	-32
0.038033	10:59:00	1215	1220	0.03832824	0.03803262	2.32F-06	0.020	2.34F-05	84
0.037095	10:59:05	1220		0.03803262	0.0370948	7.37E-06	0.020	7.49E-05	270
0.037044	10:59:10	1225	1230	0.0370948	0.03704383	4.00E-07	0.019	4.11E-06	15
0.036911	10:59:15	1230	1235	0.03704383	0.03691131	1.04E-06	0.019	1.07E-05	38
0.036799	10:59:20	1235	1240	0.03691131	0.03679918	8.81E-07	0.019	9.06E-06	33
0.036718	10:59:25	1240	1245	0.03679918	0.03671764	6.40E-07	0.019	6.60E-06	24
0.036371	10:59:30	1245	1250	0.03671764	0.03637105	2.72E-06	0.019	2.82E-05	101
0.036055	10:59:35	1250	1255	0.03637105	0.03605505	2.48E-06	0.019	2.58E-05	93
0.035688	10:59:40	1255			0.03568807	2.88E-06	0.019	3.01E-05	109
0.035576	10:59:45	1260		0.03568807	0.03557594	8.81E-07	0.019	9.25E-06	33
0.035454	10:59:50	1265	1270	0.03557594	0.03537354	9.61E-07	0.019	1.01E-05	36
0.035076	10:59:55			0.03545362					
		1270				2.96E-06	0.019	3.13E-05	113
0.035148	11:00:00	1275	1280	0.03507645		-5.60E-07	0.019	-5.94E-06	-21
0.034913	11:00:05	1280		0.03514781		1.84E-06	0.019	1.95E-05	70
0.034546	11:00:10	1285		0.03491335		2.88E-06	0.019	3.07E-05	111
0.034057	11:00:15	1290		0.03454638		3.84E-06	0.019	4.13E-05	149
0.033863	11:00:20	1295		0.03405708	0.0338634	1.52E-06	0.019	1.64E-05	59
0.033394	11:00:25	1300	1305	0.0338634	0.0333945	3.68E-06	0.018	4.00E-05	144
0.033242	11:00:30	1305	1310		0.03324159	1.20E-06	0.018	1.31E-05	47
0.032905	11:00:35	1310	1315	0.03324159	0.0329052	2.64E-06	0.018	2.90E-05	104
0.032803	11:00:40	1315	1320	0.0329052	0.03280326	8.01E-07	0.018	8.81E-06	32
0.032181	11:00:45	1320	1325	0.03280326	0.03218145	4.88E-06	0.018	5.41E-05	195
0.032018	11:00:50	1325	1330	0.03218145	0.03201835	1.28E-06	0.018	1.43E-05	51
0.031743	11:00:55	1330		0.03201835		2.16E-06	0.018	2.42E-05	87
0.031193	11:01:00	1335		0.03174312		4.32E-06	0.018	4.87E-05	175
0.030948	11:01:05	1340		0.03119266		1.92E-06	0.018	2.18E-05	79
0.030612	11:01:10	1345		0.03119200		2.64E-06	0.018		109
								3.02E-05	
0.029908	11:01:15	1350		0.03061162		5.52E-06	0.017	6.36E-05	229
0.028705	11:01:20	1355		0.02990826	0.0287054	9,45E-06	0.017	1,11E-04	399
0.026218	11:01:25	1360	1365		0.02621814	1.95E-05	0.016	2.37E-04	853
0.020856	11:01:30	1365		0.02621814		4.21E-05	0.015	5.52E-04	1988
0.008828	11:01:35	1370		0.02085627		9.45E-05	0.013	1.51E-03	5434
0.008532	11:01:40	1375		0.00882773		2,32E-06	0.011	4.39E-05	158
0.007676	11:01:45	1380	1385	0.00853211	0.00767584	6.73E-06	0.010	1.29E-04	466
0.007778	11:01:50	1385	1390	0.00767584	0.00777778	-8.01E-07	0.010	-1.56E-05	-56
0.007166	11:01:55	1390	1395	0.00777778	0.00716616	4.80E-06	0.010	9.42E-05	339
0.00633	11:02:00	1395		0.00716616		6.56E-06	0.010	1,32E-04	474

0.006004	11:02:05	1400	1405	0.00633028	0.00600408	2.56E-06	0.010	5.23E-05	188
0.005015	11:02:10	1405	25/07/20	0.00600408	0.00501529	7.77E-06	0.010	1.62E-04	583
			1773.753						
0.004444	11:02:15	1410	1415	0.00501529	0.00444444	4.48E-06	0.009	9.60E-05	346
0.003445	11:02:20	1415	1420	0.00444444	0.00344546	7.85E-06	0.009	1.73E-04	621
0.003303	11:02:25	1420	1425	0.00344546	0.00330275	1.12E-06	0.009	2.51E-05	91
0.002589	11:02:30	1425	1430	0.00330275	0.00258919	5.60E-06	0.009	1.28E-04	460
0.002273	11:02:35	1430	1435	0.00258919	0.00227319	2.48E-06	0.009	5.76E-05	207
0.001611	11:02:40	1435	1440	0.00227319	0.0016106	5,20E-06	0.008	1,23E-04	443
0.001101	11:02:45	1440	1445		0.00110092	4.00E-06	0.008	9.67E-05	348
0.00052	11:02:50	1445	1450	0.00110092	0.00051988	4.56E-06	0.008	1.13E-04	405
0.000306	11:02:55	1450	1455	0.00051988	0.00030581	1.68E-06	0.008	4.21E-05	152
0.000296	11:03:00	1455	1460	0.00030581	0.00029562	8.01E-08	0.008	2.01E-06	7
0.001223	11:03:05	1460	1465	0.00029562	0.00122324	-7.29E-06	0.008	-1.80E-04	-648
0.001244	11:03:10	1465	1470	0.00122324	0.00124363	-1.60E-07	0.008	-3.89E-06	-14
0.00157	11:03:15	1470	1475	0.00124363	0.00156983	-2.56E-06	0.008	-6.18E-05	-222
0.001081	11:03:20	1475	1480	0.00156983	0.00108053	3.84E-06	0.008	9.29E-05	335
0.00107	11:03:25	1480	1485	0.00108053	0.00107034	8.01E-08	0.008	1.95E-06	7
0.000367	11:03:30	1485	1490	0.00107034	0.00036697	5.52E-06	0.008	1.37E-04	492
0.000703	11:03:35	1490	1495	0.00036697	0.00070336	-2.64E-06	0.008	-6.59E-05	-237
0.000459	11:03:40	1495	1500	0.00070336	0.00045872	1.92E-06	0.008	4.78E-05	172
8.15E-05	11:03:45	1500	1505	0.00045872	8.1549E-05	2.96E-06	0.008	7.46E-05	269
0.000122	11:03:50	1505	1510	8.1549E-05	0.00012232	-3.20E-07	0.008	-8.12E-06	-29
4.08E-05	11:03:55	1510	1515	0.00012232	4.0775E-05	6.40E-07	0.008	1.63E-05	59
-0.00025	11:04:00	1515	1520	4.0775E-05	-0.0002548	2.32E-06	0.008	5.94E-05	214
-0.00043	11:04:05	1520	1525	-0.0002548	-0.0004281	1.36E-06	0.008	3.51E-05	126
-0.00068	11:04:10	1525	1530	-0.0004281	-0.000683	2.00E-06	0.008	5.21E-05	188
0.000765	11:04:15	1530	1535	-0.000683	0.00076453	-1.14E-05	0.008	-2.89E-04	-1041
0.000775			1540		0.00077472				
	11:04:20	1535		0.00076453		-8.01E-08	0.008	-1.98E-06	-7
-0.0001	11:04:25	1540	1545	0.00077472	-0.0001019	6.89E-06	0.008	1.73E-04	623
0.000408	11:04:30	1545	1550	-0.0001019	0.00040775	-4.00E-06	0.008	-1.01E-04	-365
0	11:04:35	1550	1555	0.00040775	0	3.20E-06	0.008	8.09E-05	291
U	11.04.00	1000	1000	0,00040773			0.008	0.U3L-U3	231
					TEST T	HKEE			
0.89085	11:05:10	0		-	Commence of the Commence of th			•	-
0.79013	11:05:15	0	5	0.89084608	0.79013252	7.91E-04	0.272	5.82E-04	2095
0.71817	11:05:20	5	10	0.79013252	0.71816514	5.65E-04	0.245	4.62E-04	1663
			03.33						
0.66241	11:05:25	10		0.71816514		4.38E-04	0,225	3.90E-04	1403
0.62051	11:05:30	15	20	0.66240571	0.62050968	3.29E-04	0.209	3.14E-04	1132
0.58718	11:05:35	20	25	0.62050968	0.58717635	2.62E-04	0.198	2.65E-04	954
0.55945	11:05:40	25	30	0.58717635		2.18E-04	0.188	2.32E-04	834
0.53468	11:05:45	30	35	0.55944954	0.5346789	1.95E-04	0.180	2.17E-04	779
0.51276	11:05:50	35	40	0.5346789	0.51276249	1.72E-04	0.172	2.00E-04	719
0.49390	11:05:55	40	45	0.51276249	0.49390418	1.48E-04	0.166	1.78E-04	642
	11:06:00	45	50						640
0.47578				0.49390418		1.42E-04	0.160	1.78E-04	
0.45968	11:06:05	50	55	0.47577982	0.459684	1.26E-04	0.155	1.63E-04	588
0.44498	11:06:10	55	60	0.459684	0.44498471	1.15E-04	0.150	1.54E-04	554
0.43118	11:06:15	60	65	0.44498471	0.43118247	1.08E-04	0.145	1.49E-04	536
0.41907	11:06:20	65	70	0.43118247	0.41907238	9.51E-05	0.141	1.35E-04	484
0.40801	11:06:25	70	75	0.41907238	0.40801223	8.69E-05	0.138	1.26E-04	454
0.39742	11:06:30	75	80	0.40801223	0.397421	8.32E-05	0.134	1.24E-04	446
0.38811	11:06:35	80	85		0.38811417	7.31E-05	0.131	1.11E-04	401
0.37976	11:06:40	85	90	0.38811417	0.37975535	6.56E-05	0.128	1.02E-04	368
0.37163	11:06:45	90	95	0.37975535	0.37163099	6.38E-05	0.126	1.01E-04	365
0.36472	11:06:50	95	100	0.37163099	0.36471967	5.43E-05	0.124	8.79E-05	316
0.35811	11:06:55	100		0.36471967		5.19E-05	0.121	8.55E-05	308
0.35230	11:07:00	105		0.35811417		4.56E-05	0.119	7.64E-05	275
0.34732	11:07:05	110	115	0.35230377	0.34731905	3.91E-05	0.118	6.65E-05	239
0.34238	11:07:10	115	120	0.34731906	0.34237513	3.88E-05	0.116	6.68E-05	241
0.33759	11:07:15	120	125	0.34237513	0.33750/29	3.75E-05	0,115	6.55E-05	236
0.33303	11:07:20	125		0.33759429		3.59E-05	0.113	6.34E-05	228
0.32912	11:07:25	130	135	0.33302752	0.32912334	3.07E-05	0.112	5.48E-05	197
0.32475	11:07:30	135	140	0.32912334	0.32475025	3,43E-05	0.111	6.21E-05	224
0.32066	11:07:35	140		0.32475025		3.21E-05	0.109	5.88E-05	212
0.31654	11:07:40	145		0.32066259		3.23E-05	0.108	5.99E-05	216
0.31270	11:07:45	150	155	0.31654434	0.31270133	3.02E-05	0.107	5.66E-05	204
0.30867	11:07:50	155	160	0.31270133	0.30867482	3.16E-05	0.105	6.00E-05	216
0.30490	11:07:55	160		0.30867482		2.96E-05	0.104	5.68E-05	205
0.30129	11:08:00	165	170	0.30490316	0.3012946	2.83E-05	0.103	5.50E-05	198
0.29775	11:08:05	170	175	0.3012946	0.2977472	2.79E-05	0.102	5.47E-05	197
0.29428	11:08:10	175	180		0.29428135	2.72E-05	0.101	5.40E-05	194
0.29101	11:08:15	180		0.29428135		2.57E-05	0.100	5.15E-05	185
0.28795	11:08:20	185		0.29100917		2.40E-05	0.099	4.86E-05	175
0.28478	11:08:25	190	195	0.28795107	0.28478084	2.49E-05	0.098	5.09E-05	183
0.28171	11:08:30	195		0.28478084		2.41E-05	0.097	4.98E-05	179
0.27849	11:08:35	200		0.28171254		2.53E-05	0.096	5.28E-05	190
0.27572	11:08:40	205	210	0.27849134	0.27571865	2.18E-05	0.095	4.59E-05	165
0.27253	11:08:45	210	215	0.27571865	0.27252803	2.51E-05	0.094	5.33E-05	192

0.26987	11:08:50	215	220 0	27252903	0.26986748	2.09E-05	0.093	4.49E-05	162
0.26703	11:08:55	220			0.26703364			4.83E-05	
						2.23E-05	0.092		174
0.26437	11:09:00	225			0.26437309	2.09E-05	0.091	4.58E-05	165
0.26177	11:09:05	230		26437309	0.2617737	2.04E-05	0.091	4.51E-05	162
0.25915	11:09:10	235	240	0.2617737	0.25915392	2.06E-05	0.090	4.59E-05	165
0.25664	11:09:15	240	245 0.	25915392	0.25663609	1.98E-05	0.089	4.45E-05	160
0.25418	11:09:20	245	250 O.	25663609	0.25417941	1.93E-05	0.088	4.38E-05	158
0.25191	11:09:25	250	255 0.	25417941	0.25190622	1.79E-05	0.087	4.09E-05	147
0.24951	11:09:30	255	100000000000000000000000000000000000000	25190622	0.2495107	1.88E-05	0.087	4.34E-05	156
0.24713	11:09:35	260			0.24712538	1.87E-05	0.086	4.36E-05	157
0.24713	11:09:40								
		265			0.24438328	2.15E-05	0.085	5.06E-05	182
0.24243	11:09:45	270		24438328	0.2424261	1,54E-05	0.084	3.65E-05	131
0.24009	11:09:50	275			0.24009174	1.83E-05	0.084	4.38E-05	158
0.23863	11:09:55	280	285 0.	24009174	0.23863405	1,14E-05	0.083	2.76E-05	99
0.23600	11:10:00	285	290 0.	23863405	0.23600408	2.07E-05	0.082	5.01E-05	180
0.23431	11:10:05	290	295 O.	23600408	0.23431193	1.33E-05	0.082	3.25E-05	117
0.23204	11:10:10	295	300 O.	23431193	0.23203874	1.79E-05	0.081	4.40E-05	158
0.22959	11:10:15	300			0.22959225	1.92E-05	0.080	4.78E-05	172
0.22807	11:10:20	305			0.22807339	1.19E-05	0.080	2.99E-05	108
0.22603	11:10:25	310							
					0.22603466	1.60E-05	0.079	4.04E-05	146
0.22437	11:10:30	315			0.22437309	1.30E-05	0.079	3.32E-05	120
0.22259	11:10:35	320			0.22258919	1.40E-05	0.078	3.59E-05	129
0.22031	11:10:40	325		22258919	0.22030581	1.79E-05	0.077	4.63E-05	167
0.21877	11:10:45	330	335 O.	22030581	0.21876656	1.21E-05	0.077	3.15E-05	113
0.21661	11:10:50	335	340 0.	21876656	0.2166055	1.70E-05	0.076	4.45E-05	160
0.21505	11:10:55	340	345	0.2166055	0.21504587	1,22E-05	0.076	3.24E-05	117
0.21339	11:11:00	345	350 O.	21504587	0.2133945	1.30E-05	0.075	3.45E-05	124
0.21136	11:11:05	350			0.21135576	1.60E-05	0.075	4.29E-05	155
0.21019	11:11:10	355			0.21019368	9.13E-06	0.074	2.46E-05	89
0.20841	11:11:15	360			0.20840979	1.40E-05	0.074	3.81E-05	137
	11:11:20								
0.20657		365			0.20657492	1.44E-05	0.073	3.95E-05	142
0.20489	11:11:25	370			0.20489297	1.32E-05	0.072	3.64E-05	131
0.20365	11:11:30	375			0.20364934	9.77E-06	0.072	2.71E-05	98
0.20193	11:11:35	380			0.20192661	1.35E-05	0.072	3.78E-05	136
0.20030	11:11:40	385	390 O.	20192661	0.20029562	1.28E-05	0.071	3.61E-05	130
0.19858	11:11:45	390	395 O.	20029562	0.19858308	1.35E-05	0.071	3.82F-05	137
0.19737	11:11:50	395	400 O.	19858308	0.19737003	9.53E-06	0.070	2.72E-05	98
0.19601	11:11:55	400	405 D	19737003	0.19601427	1.06E-05	0.070	3.06E-05	110
0.19440	11:12:00	405	410 0.	19601427	0.19440367	1.26E-05	0.069	3.66E-05	132
0.19323	11:12:05	410		19440367	0.1932314	9.21F-06	0.069	2.68F-05	96
0.19155	11:12:10	415			0.19154944	1.32E-05	0.068	3.87E-05	139
0.19035	11:12:15	420			0.19034659	9.45E-06	0.068	2.79E-05	100
0.18866	11:12:20	425			0.18866463	1.32E-05	0.067	3.92E-05	141
0.18717	11:12:25	430			0.18716616	1.18E-05	0.067	3.52E-05	127
0.18581	11:12:30	435		18716616	0.1858104	1.06E-05	0.066	3.21E-05	115
0.18444	11:12:35	440			0.18444444	1.07E-05	0.066	3.25E-05	117
0.18305	11:12:40	445	450 O.	18444444	0.18304791	1.10E-05	0.066	3.35E-05	120
0.18150	11:12:45	450	455 0.	18304791	0.18149847	1.22E-05	0.065	3.74E-05	135
0.17990	11:12:50	455	460 O.	18149847	0.17989806	1.26E-05	0.065	3.89E-05	140
0.17825	11:12:55	460	465 0.	17989806	0.17824669	1,30E-05	0.064	4.05E-05	146
0.17616	11:13:00	465	470 O.		0.17615698	1.64E-05	0.064	5.17E-05	186
0.17464	11:13:05	470	5021E 170		0.17463812	1.19E-05	0.063	3.79E-05	136
		30000	12.202		0.17337411				114
0.17337 0.17146	11:13:10 11:13:15	475 480			0.1714577	9.93E-06 1.51E-05	0.063	3.18E-05 4.85E-05	175
0.17014 0.16831	11:13:20 11:13:25	485 490			0.17014271	1,03E-05	0.062	3.36E-05	121
					0.16830785	1.44E-05	0.061	4.72E-05	170
0.16693	11:13:30	495		16830785	0.1669317	1.08E-05	0.061	3.57E-05	129
0.16550	11:13:35	500			0.16550459	1.12E-05	0.060	3.73E-05	134
0.16439	11:13:40	505			0.16439348	8.73E-06	0.060	2.92E-05	105
0.16323	11:13:45	510	515 0.	16439348	0.1632314	9.13E-06	0.059	3.08E-05	111
0.16200	11:13:50	515	520	0.1632314	0.16199796	9.69E-06	0.059	3.29E-05	118
0.16078	11:13:55	520	525 0.	16199796	0.16078491	9.53E-06	0.059	3.25E-05	117
0.15893	11:14:00	525	530 O.	16078491	0.15892966	1.46E-05	0.058	5.02E-05	181
0.15820	11:14:05	530			0.15819572	5.76E-06	0.058	2.00E-05	72
0.15722	11:14:10	535			0.15721713	7.69E-06	0.057	2.68E-05	96
0.15545	11:14:15	540			0.15545362	1.39E-05	0.057	4.86E-05	175
0.15454	11:14:20	545			0.15453619	7.21E-06	0.057	2.55E-05	92
	11:14:25								
0.15336		550			0.15336391	9.21E-06	0.056	3,28E-05	118
0.15216	11:14:30	555			0.15216106	9.45E-06	0.056	3.38E-05	122
0.15144	11:14:35	560			0.15143731	5.68E-06	0.056	2.05E-05	74
0.14998	11:14:40	565			0.14997961	1.14E-05	0.055	4.15E-05	149
0.14899	11:14:45	570			0.14899083	7.77E-06	0.055	2.83E-05	102
0.14766	11:14:50	575	580 O.	14899083	0.14765545	1.05E-05	0.054	3.85E-05	139
0.14652	11:14:55	580	585 0.	14765545	0.14652396	8.89E-06	0.054	3.29E-05	118
0.14534	11:15:00	585	590 O.	14652396	0.14534149	9.29E-06	0.054	3.46E-05	125
0.14473	11:15:05	590			0.14472987	4.80E-06	0.053	1.80E-05	65

0.14385	11:15:10	595	600	0.14472987	0.14205221	6.89E-06	0.053	2.59E-05	93
0.14273	11:15:15	600		0.14385321		8.81E-06	0.053	3.33E-05	120
0.14168	11:15:20	605		0.14273191		8.25E-06	0.053	3.14E-05	113
0.14063	11:15:25	610	2005 ×	0.14168196	100	8.25E-06	0.052	3.16E-05	114
0.14009	11:15:30	615		0.14063201	0.14009174	4.24E-06	0.052	1.63E-05	59
0.13935	11:15:35	620	625	0.14009174	0.1393476	5.84E-06	0.052	2.26E-05	81
0.13788	11:15:40	625	630	0.1393476	0.13787971	1.15E-05	0.051	4.49E-05	161
0.13670	11:15:45	630	635	0.13787971	0.13669725	9.29E-06	0.051	3.64E-05	131
0.13583	11:15:50	635	640	0.13669725	0.13583078	6.81E-06	0.051	2.69E-05	97
0.13517	11:15:55	640		0.13583078	0.1351682	5.20E-06	0.050	2.06E-05	74
0.13442	11:16:00	645	650		0.13442406	5.84E-06	0.050	2.33E-05	84
0.13316	11:16:05	650			0.13316004	9.93E-06	0.050	3.98E-05	143
				0.13316004					
0.13221	11:16:10	655				7.45E-06	0.050	3.01E-05	108
0.13135	11:16:15	660	1000000	0.13221203		6.81E-06	0.049	2.76E-05	99
0.13058	11:16:20	665		0.13134557	0.13058104	6.00E-06	0.049	2.45E-05	88
0.12979	11:16:25	670		0.13058104		6.24E-06	0.049	2,56E-05	92
0.12895	11:16:30	675	680	0.12978593	0.12895005	6.56E-06	0.048	2.71E-05	97
0.12852	11:16:35	680	685	0,12895005	0.12852192	3.36E-06	0.048	1.39E-05	50
0.12747	11:16:40	685	690	0.12852192	0.12747197	8.25E-06	0.048	3.43E-05	124
0.12675	11:16:45	690	695	0.12747197	0.12674822	5.68E-06	0.048	2.38E-05	86
0.12578	11:16:50	695	700	0.12674822	0.12577982	7.61E-06	0.048	3.20E-05	115
0.12490	11:16:55	700		0.12577982		6.89E-06	0.047	2.92E-05	105
0.12396	11:17:00	705		0.12490316		7.45E-06	0.047	3.17E-05	114
0.12357	11:17:05	710			0.12356779	3.04E-06	0.047	1.30E-05	47
0.12223	11:17:10	715		0.12356779		1.05E-05	0.046	4.51E-05	163
0.12152	11:17:15	720		0.12223242		5.60E-06	0.046	2.43E-05	87
0.12127	11:17:20	725	30000	0.12151886	The second second second second	1.92E-06	0.046	8.36E-06	30
0.12047	11:17:25	730		0.12127421		6.32E-06	0.046	2.76E-05	99
0.11982	11:17:30	735	740	0.12046891	0.11981651	5.12E-06	0.046	2.25E-05	81
0.11885	11:17:35	740	745	0.11981651	0.11884811	7.61E-06	0.045	3.35E-05	121
0.11827	11:17:40	745	750	0.11884811	0.11826707	4.56E-06	0.045	2.02E-05	73
0.11748	11:17:45	750	755	0.11826707	0.11748216	6.16E-06	0.045	2.75E-05	99
0.11687	11:17:50	755	760	0.11748216	0.11687054	4.80E-06	0.045	2.15E-05	77
0.11616	11:17:55	760	765	0.11687054	0.11615698	5.60E-06	0.044	2.52E-05	91
0.11551	11:18:00	765		0.11615698		5.04E-06	0.044	2.28E-05	82
0.11459	11:18:05	770		0.11551478		7.29E-06	0.044	3.31E-05	119
0.11359	11:18:10	775	2.000	0.11458716		7.85E-06	0.044	3.59E-05	129
0.11294	11:18:15	780		0.11458718		5.12E-06			85
							0.043	2.36E-05	
0.11220	11:18:20	785		0.11293578		5.76E-06	0.043	2.67E-05	96
0.11158	11:18:25	790		0.11220183		4.88F-06	0.043	2,27E-05	82
0.11073	11:18:30	795		0.11158002		6.65E-06	0.043	3.11E-05	112
0.11021	11:18:35	800		0.11073394	0.11021407	4.08E-06	0.043	1.92E-05	69
0.10936	11:18:40	805	810	0.11021407	0.1093578	6.73E-06	0.042	3.18E-05	114
0.10867	11:18:45	810	815	0.1093578	0.10867482	5.36E-06	0.042	2.55E-05	92
0.10813	11:18:50	815	820	0.10867482	0.10813456	4.24E-06	0.042	2.02E-05	73
0.10714	11:18:55	820	825	0.10813456	0.10713558	7.85E-06	0.042	3.77E-05	136
0.10640	11:19:00	825	830	0.10713558	0.10640163	5.76E-06	0.041	2.78E-05	100
0.10529	11:19:05	830	835	0.10640163	0.10529052	8.73E-06	0.041	4.25E-05	153
0.10390	11:19:10	835		0.10529052		1.09E-05	0.041	5.35E-05	193
0.10326	11:19:15	840	200000	0.10390418	0.10326198	5.04E-06	0.040	2.50E-05	90
0.10227	11:19:20	845		0.10326198		7.77E-06	0.040	3.87E-05	139
0.10148	11:19:25	850		0.10227319		6.24E-06	0.040	3.13E-05	113
0.09993	11:19:30	855 860		0.10147808		1.22E-05	0.039	6.16E-05	222
				0.09992864		5.44E-06	0.039	2.78E-05	100
0.09814	11:19:40	865		0.09923547		8.57E-06	0.039	4.41E-05	159
0.09721	11:19:45	870		0.09814475		7.37E-06	0.039	3.82E-05	138
0.09617	11:19:50	875		0.09720693		8.17E-06	0.038	4.27E-05	154
0.09470	11:19:55	880		0.09616718		1.15E-05	0.038	6.09E-05	219
0.09372	11:20:00	885		0.09469929		7.69E-06	0.037	4.10E-05	148
0.09188	11:20:05	890		0.09372069		1.45E-05	0.037	7.83E-05	282
0.09109	11:20:10	895	900	0.09187564	0.09109072	6.16E-06	0.037	3.37E-05	121
0.08986	11:20:15	900	905	0.09109072	0.08985729	9.69E-06	0.036	5.34E-05	192
0.08840	11:20:20	905	910	0.08985729	0.08839959	1.14E-05	0.036	6.39E-05	230
0.08723	11:20:25	910	915	0.08839959	0.08722732	9.21E-06	0.035	5.20E-05	187
0.08453	11:20:30	915		0.08722732		2.12E-05	0.035	1.22E-04	439
0.08206	11:20:35	920			0.08205912	1.94E-05	0.034	1.14E-04	410
0.07954	11:20:40	925		0.08205912		1.98E-05	0.033	1.19E-04	428
0.07504	11:20:45	930		0.07954128		3.54E-05	0.032	2,20E-04	793
0.07143	11:20:50	935			0.07142712	2.83E-05	0.031	1.84E-04	661
0.06224	11:20:55	940		0.07142712		7.21E-05	0.029	5.00E-04	1800
0.03070	11:21:00	945			0.03070336	2.48E-04	0.022	2.21E-03	7943
0.01935	11:21:05	950		0.03070336	0.0193476	8.92E-05	0.016	1.13E-03	4086
0.01723	11:21:10	955	960		0.01722732	1.67E-05	0.014	2.45E-04	882
0.01724	11:21:15	960		0.01722732		-8.01E-08	0.013	-1.21E-06	-4
0.01647	11:21:20	965	970	0.01723751	0.01647299	6.00E-06	0.013	9.13E-05	329
0.01664	11:21:25	970	975	0.01647299	0.01663609	-1.28E-06	0.013	-1.96E-05	-71

0.01655	11:21:30	975	980	0.01663609	0.01655454	6.40E-07	0.013	9.80E-06	35
0.01652	11:21:35	980	985	0.01655454	0.01652396	2.40E-07	0.013	3.68E-06	13
0.01585	11:21:40	985	990	0.01652396	0.01585117	5.28E-06	0.013	8.17E-05	294
0.01561	11:21:45	990	995	0.01585117	0.01560652	1.92E-06	0.013	3.00E-05	108
0.01540	11:21:50	995	1000	0.01560652	0.01540265	1.60E-06	0.013	2.52E-05	91
0.01505	11:21:55	1000		0.01540265		2.80E-06	0.013	4.43E-05	160
0.01478	11:22:00	1005		0.01504587		2.08E-06	0.013	3.32E-05	120
0.01449	11:22:05	1010		0.01478084		2.32E-06	0.012	3.73E-05	134
0.01410	11:22:10	1015		0.01448522		3.04E-06	0.012	4.93E-05	177
0.01420	11:22:15	1020		0.01409786	0.0141998	-8.01E-07	0.012	-1.30E-05	-47
0.01425	11:22:20	1025	1030			1.20E-06			
					0.01404689		0.012	1.95E-05	70
0.01352	11:22:25	1030			0.01351682	4.16E-06	0.012	6.83E-05	246
0.01280	11:22:30	1035	1040	0.01351682		5.60E-06	0.012	9.35E-05	337
0.01314	11:22:35	1040		0.01280326		-2.64E-06	0.012	-4.43E-05	-159
0.01306	11:22:40	1045	1050	0.01313965	0.0130581	6.40E-07	0.012	1.07E-05	39
0.01223	11:22:45	1050	1055		0.01223242	6.48E-06	0.012	1.10E-04	395
0.01229	11:22:50	1055	1060	0.01223242		-4.80E-07	0.012	-8.21E-06	-30
0.01174	11:22:55	1060		0.01229358		4.32E-06	0.012	7.43E-05	268
0.01153	11:23:00	1065		0.01174312		1.68E-06	0.012	2.92E-05	105
0.01138	11:23:05	1070		0.01152905		1.20E-06	0.011	2.10E-05	76
0.01158	11:23:10	1075	1080	0.01137615	0.01158002	-1.60E-06	0.011	-2.79E-05	-101
0.01147	11:23:15	1080	1085	0.01158002	0.01146789	8.81E-07	0.011	1.54E-05	55
0.01083	11:23:20	1085	1090	0.01146789	0.01082569	5.04E-06	0.011	8.88E-05	320
0.01101	11:23:25	1090	1095	0.01082569	0.01100917	-1.44E-06	0.011	-2.55E-05	-92
0.01039	11:23:30	1095	1100	0.01100917	0.01038736	4.88E-06	0.011	8.71E-05	314
0.00999	11:23:35	1100	1105	0.01038736	0.00998981	3.12E-06	0.011	5.65E-05	203
0.00937	11:23:40	1105	1110	0.00998981	0.00936799	4.88E-06	0.011	8.97E-05	323
0.00976	11:23:45	1110	1115	0.00936799	0.00975535	-3.04E-06	0.011	-5.60E-05	-202
0.00958	11:23:50	1115	1120	0.00975535		1.36E-06	0.011	2.50E-05	90
0.00955	11:23:55	1120		0.00958206		2.40E-07	0.011	4.42E-06	16
0.00933	11:24:00	1125		0.00955148		1.76E-06	0.011	3.26E-05	117
0.00925	11:24:05	1130		0.00932722		6.40E-07	0.011	1,19E-05	43
0.00890	11:24:10	1135		0.00932722		2.72E-06	0.011	5.09E-05	183
0.00891	11:24:15	1140		0.00324307		-8.01E-08	0.011	-1.50E-06	-5
0.00867	11:24:10	1145		0.00889998		1.84E-06	0.011	3.47E-05	125
	11:24:25								
0.00860		1150	1155	0.00867482	0.00860347	5.60E-07	0.011	1.06E-05	38
0.00854	11:24:30	1155	1160	0.00860347	0.0085423	4.80E-07	0.011	9.11E-06	33
0.00805	11:24:35	1160	1165		0.00805301	3.84E-06	0.010	7.35E-05	265
0.00778	11:24:40	1165	1170	0.00805301		2.16E-06	0.010	4.18E-05	151
0.00771	11:24:45	1170		0.00777778		5.60F-07	0.010	1.09F-05	39
0.00805	11:24:50	1175	1180	0.00770642		-2.72E-06	0.010	-5.27E-05	-190
0.00754	11:24:55	1180		0.00805301		4.00E-06	0.010	7.77E-05	280
0.00745	11:25:00	1185	1190	0.00754332		7.21E-07	0.010	1.41E-05	51
0.00728	11:25:05	1190		0.00745158		1.36E-06	0.010	2.68E-05	96
0.00743	11:25:10	1195	1200	0.00727829		-1.20E-06	0.010	-2.36E-05	-85
0.00675	11:25:15	1200		0.00743119		5.36E-06	0.010	1.06E-04	383
0.00652	11:25:20	1205		0.00674822		1.76E-06	0.010	3.54E-05	128
0.00633	11:25:25	1210		0.00652396		1.52E-06	0.010	3.08E-05	111
0.00617	11:25:30	1215		0.00633028		1.28E-06	0.010	2.61E-05	94
0.00602	11:25:35	1220	1225	0.00616718		1,12E-06	0.010	2.29E-05	83
0.00534	11:25:40	1225		0.00602446		5,36E-06	0.010	1.11E-04	401
0.00549	11:25:45	1230		0.00534149		-1.20E-06	0.010	-2.51E-05	-90
0.00549	11:25:50	1235		0.00549439		0.00E+00	0.010	0.00E+00	0
0.00515	11:25:55	1240		0.00549439		2.72E-06	0.010	5.72E-05	206
0.00477	11:26:00	1245		0.00514781		2.96E-06	0.009	6.29E-05	227
0.00478	11:26:05	1250		0.00477064		-8.01E-08	0.009	-1.71E-06	-6
0.00473	11:26:10	1255	1260	0.00478084	0.00472987	4.00E-07	0.009	8.56E-06	31
0.00435	11:26:15	1260	1265	0.00472987	0.0043527	2.96E-06	0.009	6.38E-05	230
0.00422	11:26:20	1265	1270	0.0043527	0.00422018	1.04E-06	0.009	2.26E-05	81
0.00531	11:26:25	1270	1275	0.00422018	0.00531091	-8.57E-06	0.009	-1.83E-04	-660
0.00408	11:26:30	1275	1280	0.00531091	0.00407747	9.69E-06	0.009	2.08E-04	748
0.00341	11:26:35	1280	1285	0.00407747	0.00341488	5.20E-06	0.009	1.15E-04	415
0.00359	11:26:40	1285	1290	0.00341488	0.00358818	-1.36E-06	0.009	-3.04E-05	-109
0.00357	11:26:45	1290	1295	0.00358818	0.00356779	1.60E-07	0.009	3.57E-06	13
0.00357	11:26:50	1295	1300	0.00356779	0.00356779	0.00E+00	0.009	0.00E+00	0
0.00320	11:26:55	1300		0.00356779		2.88E-06	0.009	6.46E-05	233
0.00291	11:27:00	1305	1310	0.00320082	0.0029052	2.32E-06	0.009	5.27E-05	190
0.00266	11:27:05	1310	1315		0.00266055	1.92E-06	0.009	4.40E-05	159
0.00249	11:27:10	1315		0.00266055		1.36E-06	0.009	3.14E-05	113
0.00198	11:27:15	1320		0.00248726		4.00E-06	0.009	9.36E-05	337
0.00215	11:27:20	1325		0.00197757		-1.36E-06	0.009	-3.20E-05	-115
0.00213	11:27:25	1330		0.00137737	0.0019368	1.68E-06	0.008	3.96E-05	142
0.00170	11:27:30	1335	1340		0.0019308	1.84E-06	0.008	4.37E-05	157
0.00170	11:27:35	1340		0.0019308		-8.81E-07	0.008	-2.10E-05	-75
0.00170	11:27:40	1345		0.00170234		8.81E-07	0.008	2.10E-05	75
0.00170	11:27:45	1350		0.00170234		2.40E-06	0.008	5.76E-05	207
0.00140	11.27.43	1330	1333	0.001/0254	0.00133033	2.400-00	0.000	J./0E-03	207

0.00144	11:27:50	4055	4000	0.001300553	0.001.10701	2 205 07	0.000	7 705 06	20
7.77.700		1355		0.00139653		-3.20E-07	0.008	-7.72E-06	-28
0.00117	11:27:55	1360	1365	0.00143731	0.00117227	2.08E-06	0.008	5.04E-05	181
0.00096	11:28:00	1365	1370	0.00117227	0.00095821	1.68E-06	0.008	4.11E-05	148
0.00067	11:28:05	1370	1375	0.00095821	0.00067278	2.24E-06	0.008	5.53E-05	199
0.00068	11:28:10	1375	1380	0.00067278	0.00068298	-8.01E-08	0.008	-1.98E-06	-7
0.00062	11:28:15	1380	1385	0.00068298	0.00062181	4.80E-07	0.008	1.19E-05	43
0.00334	11:28:20	1385	1390	0.00062181		-2.14E-05	0.008	-5.04E-04	-1816
0.00127	11:28:25	1390	1395	0.00334353	0.00127421	1.63E-05	0.009	3.79E-04	1364
0.00002	11:28:30	1395	1400	0.00127421	2.0387E-05	9.85E-06	0.008	2.44E-04	880
-0.00008	11:28:35	1400	1405	2.0387E-05	-8.155E-05	8.01E-07	0.008	2.04E-05	73
-0.00015	11:28:40	1405	1410	-8.155E-05	-0.0001529	5.60E-07	0.008	1.43E-05	52
-0.00055	11:28:45	1410							
			1415	-0.0001529	-0.0005505	3.12E-06	0.008	8.06E-05	290
-0.00045	11:28:50	1415	1420	-0.0005505	-0.0004485	-8.01E-07	0.008	-2.08E-05	-75
0.00024	11:28:55	1420	1425	-0.0004485	0.00024465	-5.44E-06	0.008	-1.39E-04	-501
-0.00064	11:29:00	1425	1430	0.00024465	-0.0006422	6.97E-06	0.008	1.79E-04	644
-0.00100	11:29:05	1430	1435	-0.0006422	-0.000999	2.80E-06	0.008	7.38E-05	266
-0.00120	11:29:10	1435	1440	-0.000999	-0.0012029	1.60E-06	0.008	4.27E-05	154
-0.00176	11:29:15	1440	1445	-0.0012029	-0.0017635	4.40E-06	0.007	1.19E-04	429
-0.00180	11:29:20	1445	1450	-0.0017635	-0.0018043	3.20E-07	0.007	8.78E-06	32
-0.00177	11:29:25	1450	1455	-0.0018043	-0.0017737	-2.40E-07	0.007	-6.59E-06	-24
-0.00189	11:29:30	1455	1460	-0.0017737	-0.0018858	8.81E-07	0.007	2.42E-05	87
-0.00205	11:29:35	1460	1465	-0.0018858	-0.0020489	1.28E-06	0.007	3.54E-05	127
-0.00244	11:29:40	1465	1470	-0.0020489	-0.0024363	3.04E-06	0.007	8.51E-05	306
-0.00300	11:29:45	1470	1475	-0.0024363	-0.0029969	4.40E-06	0.007	1.26E-04	453
-0.00315	11:29:50	1475	1480	-0.0029969	-0.0031498	1.20E-06	0.007	3.49E-05	126
-0.00336	11:29:55	1480	1485	-0.0031498	-0.0033639	1.68E-06	0.007	4.92E-05	177
-0.00309	11:30:00	1485	1490	-0.0033639	-0.0030887	-2.16E-06	0.007	-6.32E-05	-228
-0.00341	11:30:05	1490	1495	-0.0030887	-0.0034149	2.56E-06	0.007	7.50E-05	270
-0.00347	11:30:10	1495	1500	-0.0034149	-0.0034659	4.00E-07	0.007	1.18E-05	43
-0.00406	11:30:15	1500	1505	-0.0034659	-0.0040571	4.64E-06	0.007	1,39E-04	501
-0.00387	11:30:20	1505	1510	-0.0040571	-0.0038736	-1.44E-06	0.007	-4.36E-05	-157
-0.00436	11:30:25	1510	1515	-0.0038736	-0.0043629	3.84E-06	0.007	1.17E-04	422
-0.00432	11:30:30	1515	1520	-0.0043629	-0.0043221	-3.20E-07	0.006	-9.87E-06	-36
-0.00428	11:30:35	1520	1525	-0.0043221	-0.0042813	-3.20E-07	0.007	-9.85E-06	-35
-0.00470	11:30:40	1525	1530	-0.0042813	-0.0046993	3.28E-06	0.006	1.02E-04	367
-0.00478	11:30:45	1530	1535	-0.0046993	-0.0047808	6.40E-07	0.006	2.01E-05	72
-0.00508	11:30:50	1535	1540						265
				-0.0047808	-0.0050765	2.32E-06	0.006	7.36E-05	
-0.00507	11:30:55	1540	1545	-0.0050765	-0.0050663	-8.01E-08	0.006	-2.56F-06	-9
-0.00517	11:31:00	1545	1550	-0.0050663	-0.0051682	8.01E-07	0.006	2.56E-05	92
-0.00535	11:31:05	1550	1555	-0.0051682	-0.0053517	1.44F-06	0.006	4.65F-05	167
-0.00563	11:31:10	1555	1560	-0.0053517	-0.0056269	2.16E-06	0.006	7.05E-05	254
-0.00579	11:31:15	1560	1565	-0.0056269	-0.00579	1.28E-06	0.006	4.23E-05	152
-0.00615	11:31:20	1565	1570	-0.00579	-0.0061468	2.80E-06	0.006	9.37E-05	337
-0.00617	11:31:25	1570	1575	-0.0061468	-0.0061672	1.60E-07	0.006	5.41E-06	19
-0.00647	11:31:30	1575	1580	-0.0061672	-0.006473	2.40E-06	0.006	8.19E-05	295
-0.00674	11:31:35	1580	1585	-0.006473	-0.006738	2.08E-06	0.006	7.20E-05	259
-0.00664	11:31:40	1585	1590	-0.006738	-0.0066361	-8.01E-07	0.006	-2.78E-05	-100
-0.00693	11:31:45	1590	1595	-0.0066361	-0.0069317	2.32E-06	0.006	8.11E-05	292
-0.00735	11:31:50	1595	1600	-0.0069317	-0.0073496	3.28E-06	0.006	1.17E-04	421
-0.00751	11:31:55	1600	1605	-0.0073496	-0.0075127	1,28E-06	0.006	4.64E-05	167
-0.00748	11:32:00	1605	1610			-2.40E-07		-8.74E-06	-31
				-0.0075127	-0.0074822		0.005		
-0.00782	11:32:05	1610	1615	-0.0074822	-0.0078186	2.64E-06	0.005	9.69E-05	349
-0.00706	11:32:10	1615	1620	-0.0078186	-0.0070642	-5.92E-06	0.006	-2.15E-04	-773
-0.00807	11:32:15	1620	1625	-0.0070642	-0.0080734	7.93E-06	0.005	2.89E-04	1042
-0.00807	11:32:20	1625	1630	-0.0080734	-0.0080734	0.00E+00	0.005	0.00E+00	0
-0.00860	11:32:25	1630	1635	-0.0080734	-0.0086035	4.16E-06	0.005	1.59E-04	573
-0.00877	11:32:30	1635	1640	-0.0086035	-0.0087666	1.28E-06	0.005	5.00E-05	180
-0.00861	11:32:35	1640	1645	-0.0087566	-0.0086137	-1.20E-06	0.005	-4.69E-05	-169
			1650		-0.0085627				
-0.00856	11:32:40	1645		-0.0086137		-4.00E-07	0.005	-1.55E-05	-56
-0.00916	11:32:45	1650	1655	-0.0085627	-0.0091641	4.72E-06	0.005	1.86E-04	671
-0.00933	11:32:50	1655	1660	-0.0091641	-0.0093272	1.28E-06	0.005	5.18E-05	186
-0.00959	11:32:55	1660	1665	-0.0093272	-0.0095923	2.08E-06	0.005	8.53E-05	307
-0.00946	11:33:00	1665	1670	-0.0095923	-0.0094597	-1.04E-06	0.005	-4.28E-05	-154
-0.00938	11:33:05	1670	1675		-0.0093782	-6.40E-07	0.005	-2.62E-05	-94
-0.00933	11:33:10	1675	1680	-0.0093782	-0.0093272	-4.00E-07	0.005	-1.63E-05	-59
-0.01004	11:33:15	1680	1685	-0.0093272		5.60E-06	0.005	2.33E-04	839
-0.01025	11:33:20	1685	1690	-0.0100408	-0.0102548	1.68E-06	0.005	7.21E-05	259
-0.01027	11:33:25	1690	1695	-0.0102548	-0.010265	8.01E-08	0.005	3.46E-06	12
-0.01060	11:33:30	1695	1700	-0.010265	-0.0106014	2.64E-06	0.005	1.15E-04	416
-0.01059	11:33:35	1700	1705	-0.0106014		-8.01E-08	0.005	-3.54E-06	-13
-0.01045	11:33:40	1705	1710	-0.0105912	-0.0104485	-1.12E-06	0.005	-4.93E-05	-177
-0.01088	11:33:45	1710	1715	-0.0104485	-0.0108767	3.36E-06	0.005	1,49E-04	538
-0.01110	11:33:50	1715	1720	-0.0108767	-0.0111009	1.76E-06	0.004	8.00E-05	288
-0.01158	11:33:55	1720	1725	-0.0111009	-0.01158	3.76E-06	0.004	1.75E-04	631
-0.01156	11:34:00	1725	1730	-0.01158	-0.0115596	-1.60E-07	0.004	-7.59E-06	-27

Test one average soakage rate from 25-500seconds 399 Lm⁻²h⁻¹

Test two average soakage rate from 25-300seconds $193 \quad Lm^2h^{\text{-1}}$

Test three average soak rate 25-400 seconds

243 Lm⁻²h⁻¹

Appendix 7

District Plan Compliance Analysis

District Plan Compliance Analysis – Tairāwhiti Resource Management Plan

Part C1-4 Region Wide Provisions

C1 - Air Quality: N/A to current application

C2 – Built Environment, Infrastructure, Energy:

C2.1.7 Rules for Provision of Infrastructure for Development (Works and Services)

	C2.1.7.1 General	Standards
	Condition	Analysis
A	 GENERAL SERVICING REQUIREMENTS a) Reticulated services shall be provided to the net area of new allotments. b) Vehicle crossings shall be provided to the boundary of the road reserve for new allotments. c) Services shall be reticulated underground in any new road reserve, shared accessway or new allotment within the Reticulated Services Boundary and in residential and commercial zones district wide. provided that stormwater infrastructure may be provided above ground where retention or attenuation measures are required or low impact design approaches are to be used. Individual customer connections may be provided above ground where there is an existing overhead supply. d) Where there is a shared access way the necessary works and services shall be provided to the terminus of the right-ofway. e) The location of reticulated services and vehicle crossings shall be identified prior to consent approval. 	 Complies a) It is proposed to provide reticulated services to the net area of each allotment as part of the proposed subdivision b) It is proposed to form a jointly owned access lot to serve all units as part of the subdivision application. c) All services are to be reticulated underground and located within the JOAL where the services are to be private. d) The proposed lots/dwellings are serviced by a shared accessway/JOAL and all connections are to be provided to the boundary of each lot. e) The submitted subdivision scheme plan and servicing plans indicate the location of reticulated services and the vehicle crossing.
В	a) Where relevant, subdivision, development and provision of infrastructure shall be consistent with the Taruheru Block Infrastructure Plan (Schedule G24) the Roading Concept Plan for the Rural Industrial A Zone (Appendix H11) and the Structure Plan for the Citrus Grove development control area (Schedule G10)	N/A Site is not located within a structure plan area.

С	STREET PLANTING a) For new roads in residential, commercial and industrial zones either: i. A minimum of 5m² of land shall be set aside within the road reserve for each potential allotment accessed from that road (based on minimum permitted site areas) for the purpose of landscaping. Such areas may be combined but shall still be located evenly throughout the road. The land shall be free from utility services; or ii. A dedicated berm for landscaping shall be provided. The minimum planting is one tree per allotment. The land shall be free from underground utility services.	N/A
D	stormwater systems a) Sites shall be provided within their site area with a means of collecting, managing and discharging stormwater from the roof of all buildings, accessways and from all impervious surfaces. b) Any connections or discharge points to the existing public stormwater system, where available, shall be at an outlet or outlets approved by the Council. c) Primary stormwater systems shall have sufficient capacity to convey a 10% AEP rainfall event without relying on secondary flow paths. d) Secondary stormwater systems shall be sufficient capacity to convey a 1% AEP rainfall event while protecting buildings and household gully traps from inundation. e) Secondary flow paths shall be free of obstructions and located on public land, land protected by an easement or land identified as a public drain. f) Stormwater conveyance shall be by way of gravity outfall with ground levels and/or contours identified prior to consent approval; and g) With regard to Rules c) and d) where stormwater runoff is greater than the capacity of the system which is to receive it, runoff shall be managed to the relevant pre-development rates or the capacity of the system shall be upgraded.	Complies It is proposed to attenuate stormwater in a combination of above ground tanks collecting roof water from each dwelling and by the use of a below ground rainsmart system located within the JOAL. It is proposed to attenuate runoff to limit the stormwater runoff from the site to the predevelopment levels during the 1 in 100-year event. Due to the variation in existing ground levels across the site, it is not practicable to achieve drainage to Aberdeen Road for the whole site. Runoff from roof areas will therefore drain via a double kerb connection and single kerb connection to Aberdeen Road. Runoff from paved areas will be directed to the underground rainsmart system and discharged to ground via soakage.
E	water supply a) Water supply within Reticulated Services Boundary i. Sites for any activity that will require a water supply shall be provided with a connection or connection point to the Council reticulated water system.	Complies It is proposed to extend a DN50 connection into the development from the DN100 water main in Aberdeen Road. The common ridermain will be located beneath the JOAL and individual connections to each lot are proposed to each dwelling.
F	WASTEWATER SYSTEMS a) Within the Reticulated Services Boundary, sites for any activity that will create wastewater shall be provided with a connection or connection point to the Council reticulated wastewater system.	Complies It is proposed to install a DN150 gravity main discharging to the existing DN150 sewer main in Aberdeen Road. Individual DN100 connections will extend from each dwelling to the common wastewater pipe beneath the JOAL.

G	energy and telecommunications a) Sites for any activity that requires electricity and telecommunication services, shall be provided with those services	Complies Power and telecommunication utilities are to be provided within the proposed JOAL's.
Н	ROADS	
н	Infrastructural Requirements a) All proposed new roads shall connect to, and be compatible with, the district roading hierarchy, as depicted in the roading hierarchy maps. b) To meet the access needs of potential users, all new or upgraded roads required for subdivision or development shall comply with the following rules for minimum widths.	N/A – No new roads are proposed. N/A
H2	Sightlines a) All new vehicle crossing /accessways shall be designed, located and developed to ensure that the sight lines (illustrated in Figure C2.13) are established and maintained with no obstructions, whether temporary or permanent. Sight lines are to be in accordance with Figure C2.1.3 and Figure C2.4 specified below. b) All new intersections shall be designed, located and developed to ensure that the sight lines (illustrated in Figure C2.1.3) are established and maintained with no obstructions, whether temporary or permanent. Sight lines are to be in accordance with Figure C2.13 and Figure C2.4 specified below.	Complies a) The new vehicle crossing will be compliant with the sightlines provided for within Figure C2.13. N/A
6 6	ACCESS	
II	Sightlines at Vehicle Crossings a) All vehicle crossings shall be constructed and located to ensure that the sight lines specified in Figure C2.4 are maintained with no obstructions, whether temporary or permanent, for the distances specified in Figure C2.13.	Complies The proposed subdivision will require the installation of two new crossings. These crossings will be designed and located so as to comply with the sightlines specified in C2.4 for the distances specified in Figure C2.12.
12	Distances of Vehicle Crossings from Intersections a) Sites shall maintain distances of crossings from intersections, so as to comply with Figures C2.6 and C2.7.	Complies The posted speed limit for Aberdeen Road is 50 km/h which is a 'Collector' Road and thus Figure 2.7 is the relevant performance criteria where a 20m setback distance is required. The proposed vehicle crossings will be set back at least 40m from Asquith Street and 30m from Stanley Road.

12	Managerina Areas	
13	 Manoeuvring Areas a) Subject to (b) with the exception of sites containing no more than one single dwelling unit, all sites shall provide either accessways, aisles and turning areas or parking spaces adequate to enable vehicles to enter and exit to the road in a forward direction. Note: An adequate turning area is one that provides for the car tracking curves depicted in Figure C2.1.4. b) Sites fronting arterial roads: The construction, addition to, or alteration of buildings (including new dwelling units) shall not encroach on or reduce on-site manoeuvring areas beyond the point that they continue to provide the ability for vehicles to enter and exit to the road in a forward direction. 	Complies All lots/units can achieve adequate on-site maneuvering within the JOAL's. N/A Aberdeen Road is a collector road.
14	Surfaces a) In residential, commercial or industrial zones or reserves adjoining these zones, all vehicle crossings between the road carriageway and the road reserve boundary shall be finished with a sealed surface and drained. b) In rural zones, or reserves adjoining rural zones, all vehicle crossings between the road carriageway and the road reserve boundary shall be: i. Finished with a sealed surface where the adjoining carriageway is sealed. ii. Finished with a hard surface where the adjoining carriageway is unsealed.	Complies The proposed vehicle crossings and the JOAL are to be formed in a concrete surface. N/A
	c) All shared accessways and associated turning areas shall be: i. Finished with a sealed surface and drained in residential, commercial or industrial zones or reserves adjoining these zones. ii. Finished with a hard surface in rural zones, or reserves adjoining rural zones. d) All accessways and associated turning areas for industrial and commercial activities shall be: i. Finished with a sealed surface and drained in residential, commercial or industrial zones or reserves adjoining these zones. ii. Finished with a hard surface in rural zones, or reserves adjoining rural zones.	Complies As above, the JOAL's are to be finished in a concrete surface that is drained in accordance with the overall stormwater design for the site. N/A The proposed use is residential
15	Access to sites with more than one road frontage a) For properties that have legal frontage on to two roads: i. Where the property is located in a Rural zone and adjoins an arterial or principal road, access shall be from the road with the lesser traffic function, as identified in the Roading Hierarchy Maps. ii. Where the property is located in a Commercial zone, Industrial zone or a Port Management zone, and adjoins an arterial or principal road, access shall be from the road with the lesser traffic function, as identified in the Roading Hierarchy Maps.	N/A – The proposed sites have only one road frontage. N/A

16	Minimum distance between vehicle crossings	Complies
	a) The minimum distance between vehicle crossings on any one site shall be 15m. b) In commercial zones, industrial zones and the Port Management zones the minimum distances between vehicle crossings on any two adjacent sites shall be 2m, unless a combined crossing not exceeding 9m serves the two adjacent sites, or the vehicle crossing is for two or more residential dwelling units located on the one site. Note: Attention is drawn to NZ Transport Agency requirement for permission to construct any accessway or vehicle crossing in the road reserve of any state highway.	The development is served by one vehicle crossing. N/A – the site is not within commercial zones, industrial zones nor the Port Management Zone.
17	Single-site vehicle access	
	a) The width of accessways and vehicle crossings for individual sites shall comply with the rules in Figure C2.8.	Does not comply – Prior to subdivision, there will be two vehicle crossings serving one site which achieve a separation distance of only 14m. Following the subdivision, this will become compliant.
	 b) The number of accessways and vehicle crossings onto a road frontage on any one site shall not exceed that shown in Figure C2.9. and c) Accessways shall comply with the standards set out in New Zealand Fire Service fire-fighting water supplies Code of Practice SNZ 4509:2008. 	Complies – The overall frontage of the site is 51m, as such two crossings are permitted. Complies – Two fire hydrants are on Aberdeen Road are located between Asquith Street and Stanley Road which comply with this national standard.
18	Multiple-site access and/or multiple unit	
	access a) Up to 10 potential dwelling units may share access from a single accessway and vehicular crossing. b) Access to serve more than 10 dwelling units are required to be served by a public road vested in the Gisborne District Council. c) Up to three commercial or industrial sites may share access from a single accessway and vehicular crossing. d) More than three commercial or industrial sites are required to be served by a public road vested in the Gisborne District Council. e) To meet the access needs of potential users, every accessway and vehicle crossing serving more than one site shall be constructed in accordance with the Figure C2.10. f) Accessways shall comply with the standards set out in New Zealand Fire Service Firefighting Water Supplies Code of Practice SNZ PAS 4509:2008.	Does not comply – the proposed JOAL will provide access to 11 dwellings. Does not comply – As above, the proposed JOAL will service 11 units however it is not proposed to vest this to Council. N/A – not a commercial or industrial site. N/A – not a commercial or industrial site. Complies. Does not comply – proposed access has been designed in accordance with the requirement for 10 dwellings being 5.5m wide. As this is serving 11 dwellings, this does not comply. Complies – As above, compliance with these standards is achieved.

J	PARKING	
J1	Provision of Parking and Loading Spaces a) Unless otherwise provided for in this chapter, parking spaces and loading bays shall be provided on site in accordance with Figure C2.11 below.	N/A – The NPS-UD made it mandatory for Council to remove minimum parking standards and this done by Council in November 2022. Notwithstanding, the proposal includes a total of thirteen parks are provided.
	b) When activities on the same site occur at different times during the day, then the number of parking spaces and loading bays to be provided shall be for the maximum requirement at any one time during the day or night.	N/A
	 c) In Figure C2.11 GFA = gross floor area. d) Parking spaces and loading bay requirements are as follows in Figure C2.11 	N/A
J2	Waiver of Parking Space or Loading Bay Requirements a) It shall not be necessary to provide parking	N/A
	spaces, loading bays or financial contributions in lieu of parking spaces or loading bays on sites in the Inner Commercial zone or the Fringe Commercial zone: provided that 1. The site has frontage to streets marked	
	as continuous street facade on the urban maps. 2. The site has no legal access to any other road or service lane.	
J3	Assessment of Number of Spaces a) The required number of parking spaces and loading bays shall be: i. Calculated in respect of each activity undertaken on the site.	N/A
	ii. Re-calculated in the event of a change in activity.iii. Re-calculated in the event of a change in the scale or intensity of land use.	
J4	Sharing of Parking and Loading Spaces a) Parking spaces and loading bays may be	N/A
	shared between different activities that occupy the same site. provided that: 1. The occupier requiring the parking spaces or loading bay is located adjacent to the occupier who provides the parking spaces or loading bay.	
	 2. The total number of required parking spaces or loading bays calculated from Figure C2.11 for the site is still provided. 3. The written agreement of the occupier providing the parking or loading bay is obtained and a copy of the agreement is lodged with Gisborne District Council prior 	
J5	to the commencement of the activity	N/A
JO	Availability of Spaces a) All required loading and parking spaces shall be kept clear and available for use of occupants or visitors during the normal hours of operation of that use. With the exception of the following activities, no parking space or loading bay shall obstruct access to any other parking space	N/A
	or loading bay: i. Parking spaces for single residential or minor dwelling units.	

	ii. Parking spaces for home occupations. iii.Parking spaces for service stations.	
J6	Provision of Parking Spaces for the Disabled	N/A
J7	Design and Construction of Parking Spaces c) All parking spaces shall be formed and constructed to comply with either the following rules for dimensions in Figure C2.12 (to accommodate the 90 percentile car illustrated in Figure C2.12 or the Australian/New Zealand Standard AS/NZS 2890.1:2004, Part 1 off-street car parking or any subsequent replacement AS/NZS for this standard.	Complies
J8	Design and Construction of Loading Bays	N/A.

C3 -Coastal Management: N/A to current application

C4 - Cultural and Historic Heritage: N/A to current application

Part C5-8 Region Wide Provisions

C5 - Environmental Risk: N/A to current application

C6 – Freshwater: Discretionary Activity pursuant to Rule 6.2.3(13)(a) for point source discharge of liquids to land where the discharge is not provided for in a norther rule in this plan.

6.2.3 Rules for Point Source Discharge

Flood Hazard Overlay F7 (Urban Stormwater Flood Hazard Area) Rules

6.2.3(2) Permitted Activity

The discharge of stormwater from land, roofs, paved areas and roads, or diversion of the same to a public stormwater network, except:

- a) From industrial or trade premises; or
- b) Discharges to Regionally Significant Wetlands and Outstanding Waterbodies identified in Schedule G17 (Regionally Significant Wetlands) and G18 (Outstanding Waterbodies) not lawfully established before the date of notification of this plan.

Note: This rule applies to point source discharges of stormwater from forestry roads and earthworks associated with plantation forestry. It prevails over Regulations 97(1) in the Resource Management (National Environment Standards for Plantation Forestry) Regulations 2017.

Permitted Activity Standards:

- a) Discharge shall be by pipe, open drain, swale, constructed wetland or vegetated filter into a natural watercourse which is the natural receiver of surface drainage water from that area;
- For stormwater discharge not lawfully established before the date of notification of this Plan;
 - Where the impervious area is greater than 1000m² and the stormwater does not originate from a farming, horticultural, rural community facility or local roading activity;
 - ii. Where the impervious area is greater than 1000m² and the stormwater originates from within the area serviced by the public stormwater network of the Gisborne urban area;

Contaminant reduction methods shall be designed and implemented to treat stormwater from the impervious area in accordance with TP 10, or by alternative methods that are

N/A

Does not comply – impervious area on the site is greater than 1000m² and the stormwater will discharge into both the stormwater network and to ground through a rainsmart soakage system.

Contaminant reduction methods have been employed in line with TP10 including a Hynds First Defence system installed upstream of the soakage device. This will treat and attenuate demonstrated to achieve an equivalent level of contaminant removal as TP 10 devices. These methods include but are not limited to constructed wetlands, swales, vegetative filters or infiltration practices. **See Advisory Note**.

runoff from paved surfaces across the site including driveways and parking areas. All discharge from the dwelling roofs will be first attenuated onsite via individual attenuation tanks then discharged to the kerb without treatment noting this will be runoff from inert materials.

- The discharge shall not contain any wastes from an industrial or trade process;
- d) The discharge shall not cause erosion of the banks or bed of the watercourse at, or downstream of, the discharge point;
- e) The discharge shall not give rise to or exacerbate any flooding of land upstream or downstream of the discharge point in rainfall events up to the 10 per cent AEP or flooding of dwellings on other properties in rainfall events up to the 1 per cent AEP;
- f) The discharge shall not contain hazardous substances, agricultural chemicals, or cause exceedance in trigger values for 95% species protection for substances that are toxic to aquatic ecosystems (as measured relative to the ANZECC Guidelines for Fresh and Marine Water Quality, 2000) in receiving water bodies after reasonable mixing;
- g) The discharge shall meet the following water quality standards downstream of the discharge point after reasonable mixing:
- No conspicuous change in the colour or visual clarity of the receiving water;
- ii. No emission of objectionable odour:
- No production of conspicuous oil or grease films, scums or foams, or floatable materials;
- iv. No rendering of fresh water unsuitable for consumption by farm animals;
- No significant adverse effects on aquatic life.

Advisory Note: Demonstration of compliance with this Rule is required to be given to the Council. Compliance with this rule will be deemed to have occurred where the stormwater treatment is undertaken in accordance with Stormwater Management Devices: Design Guidelines Manual 2003. Technical Publication 10 (TP10) of the Auckland Council.

N/A

Will comply

C7 - Land Management: N/A to current application

C8 – Natural Hazards:

C8.2.	.3 Regional Rule	s for Flood Hazards	
C8.2.	.3.1 General Sta	ndards	
Α.	Zone: Not more than 3 width identified o	3 percent of the F4 floodway on any one site, within this zone is by buildings or other solid	N/A
	objects (includin		
В.	Control Area a) No building sh floodways and n above mean sec plan and Schedu b) No site shall be commercial purp minimum ground	hin the Citrus Grove Development all be constructed prior to the minimum ground level of 3.9m a level as set out in the structure alle G10 a) to c) being achieved, be used for industrial or coses prior to the floodways and a level of 3.9m above mean sea at the structure plan and Schedule and achieved.	N/A
C	 Maintenance of Citrus Grove Dev No activity or use established withi 	constructed Floodways within the relopment Control Area: e shall be undertaken or in the constructed floodways ect and/or compromise floodway	N/A
D	. Minimum habita		N/A
are	Floor levels as specified below: Poverty Bay and Gisborne urban area: 300mm above the design flood standard or 600 mm above general ground level whichever is the greatest;		
	ingatuna and Wharekaka (aga Bay):	500mm above the design flood standard;	
Tel	Karaka:	1.0m above general ground level or 300mm above flood level, whichever is the greater.	
	relocated in the habitable floor less shall apply): a) 300mm about 100 apply 100 appl	dential building erected or area shall have minimum evels as follows (the highest level or we the 1977 and/or 1985 flood coard above any adjacent road oath or ground acting as a introl or weir.	
		(Urban Stormwater Flood Hazard A	
8.2.3(3	Any activity in in the diversion	the road reserve that may result on or ponding of flood waters, new road, road alteration or ion.	N/A
8.2.3(3	4) Restricted Discre	etionary Activity ence, or alterations to existing solid	N/A

8.2.3(35) Restricted Discretionary Activity Earthworks that change the permanent level of the land.	N/A
---	-----

C9 – Natural Heritage - N/A – The subject site is not located within any natural heritage overlay areas.

C10 – Subdivision - The proposal is determined to be a Discretionary subdivision consent pursuant to Rule C10.1.6 (9).

C10.1.6 Rules for Subdivisions C10.1.6.1 General Standards A. General Rules Does not comply – as above, proposal does not a) Subdivisions shall comply with C2 - Built comply with all standards within chapter C2. Environment, Infrastructure and Energy and C9.2 Esplanade Reserves/Strips. **Allotment Sizes and Dimensions** a) Subdivisions shall comply with the rules for Does not comply - Site is within the General allotment sizes and shape factor and road Residential Zone and the Lot areas are proposed frontage requirements in C10.1: as follows: Lot 1: 156m² Minimum Net Area Zone Lot 2: 157m² 350m² per unit or 280m² per unit affached on one side to another unit Residential dwellings Lot 3: 343m² or 250m² per dwelling unit attached on two or more sides (including Lot 4: 280m² verticaty). 400m² per unit or 320m² per unit attached on one side to another unit or 250m² per dwelling unit attached on two or more sides [including Lot 5: 217m² General Residential and Residential Protection Zones (reticulated) Lot 6: 167m² Lot 7: 114m² General Residential and Residential 1000m² per unit Lot 8: 114m² Residential Education III of the I Refer Rule C10.1.6(8) Lot 9: 144m² 1000m² per unit Lot 10: 118m² caution layer Lot 11: 117m² Lot 12: 118m² Lots 3 and 4 both having one unit have a proposed area of 343m² and 280m² which does not meet the minimum of 400m² required within the General Residential Zone. Lots 1, 2 and 5 - 12 each have a unit attached at one side to another unit however do not meet the minimum of 320m² required. provided that: N/A 1. In Rural Productive and Rural Residential zones where an existing site used for farming purposes is occupied by more than one dwelling-house erected prior to 31 March 1987, and any of those dwelling houses, excluding at least one to remain on the site, is no longer required for farming the site, a new site may be created notwithstanding that the site does not meet the requirements in Figure C10.1, but subject to compliance with the following:

i.

ii.

Minimum area – 1000m² Maximum area – 2000m²

Maximum shape factor and road frontage

	2.	requirement. Every site shall be of such a shape as to contain a rectangle 13m x 18m without encroachment on to any yard, iv. the new boundaries of the site to be created are to be so located as to ensure that the existing buildings conform with the requirements of the Plan. The rules for minimum allotment sizes and dimensions shall not apply to subdivisions for meteorological activities.	N/A
C.	Bui	Iding Platforms	
	a)	Every site that is intended to be used for any building shall contain a building platform that is stable and not affected by any potentially unstable land.	Complies
D.	Exi	sting Buildings	
	a)	Any new boundaries created by subdivision shall be located such that any existing buildings comply with the rules of the relevant zone and (where relevant) overlay; or that the appropriate resource consents have been obtained.	N/A – all existing buildings will be removed.
E.	Bou	undary Adjustment	
	a)	Boundary adjustments shall not create any additional sites or reduce any site below the minimum subdivision size for the zone except where a single site is being created exclusively for a network utility service. This provision shall not apply where sites are to be amalgamated.	N/A
F.	Eas	sements	
	a) b)	The granting of a subdivision consent may include a condition requiring the reservation of a memorandum of easement in respect of any of the following: i. the creation of right of way access to any allotment pursuant to section 321 of the Local Government Act 1974; ii. the right to maintain shelter belts; iii. the right in respect of a dominant tenement or easement in gross to lay, construct, erect, convey, discharge or maintain an underground or overhead water, electric power, telecommunications, gas, sewage, or stormwater service; iv. the right to construct and maintain a party wall; v. any other easement that the specific situation may require. For stormwater pipes, sewer pipes and water supply pipes that are to be vested in the Gisborne district Council, easement widths shall be the larger of: i. a width equal to 1.5 times the depth to the invert level with the service laid in the centre, or	Complies – Schedule of easements proposed which covers these aspects.

ii. a minimum of 3m with the service laid in the centre.

C11 – General Controls (signage, lighting and glare, radiofrequency, petrochemicals exploration) - N/A to this application

C11.2 Noise and Vibration

A Long Term Construction		
1.	Emissions of Construction noise shall not exceed 168 Calendar days in any 12 month period.	Will comply – it is anticipated that the construction noise will not exceed 168 calendar days.
2.	The construction activity shall comply with the noise limits specified in Figure C.11	Will Comply – We anticipate a condition of consent limiting construction hours to 7am – 6pm, Monday – Saturday. Any works are expected to operate within the limits outlined in C.11.

Part D – Area Based Provisions

DD1 – Residential Zones – Restricted Discretionary Activity pursuant to Rule 1.61(17) of the District Plan.

DD1.61 Rules For Residential Zones

DD1.6.1.1 General Standards

A. Nuisance

- a) A heavy vehicle, being a motor vehicle which has a gross laden weight exceeding 3,500kg may only arrive at or depart from a street adjacent to, or a site within any residential zone, between the hours of 0600-2200. No other activity associated with such vehicles shall be conducted outside 0600-2200 hours unless the activity satisfies the rules in this Plan.
- b) No barricade or structure shall be placed on any property, so as to unreasonably prevent or inhibit entry by the police or any authorised officer of the consent authority.

N/A

N/A

B. Recession Planes

a) Buildings, parts of buildings, and structures (excluding chimneys, antennas and support structures, shall be contained within recession planes commencing 2.75m above each site boundary. The angles of the recession plane at each site boundary shall be determined using the recession plane indicator.

provided that a building or structure may be erected where it exceeds the boundary of the recession plane by not more than one metre if the written consent of the adjoining neighbour is obtained and submitted to the consent authority.

Pre-Subdivision: Complies – proposed dwellings will comply with HIRB at all external boundaries.

Post Subdivision: Does not comply – proposed units will infringe the height in relation to boundary planes as follows:

Unit 1: As it relates to the western boundary with the JOAL by a maximum height of 0.55m for the length of the dwelling and due to the dwelling being constructed as a duplex it sits wholly within the recessing plane along the eastern/common boundary with Unit 2.

Unit 2: Unit 2 will sit wholly within the recession plane as it relates to the western boundary due to it being a duplex unit constructed on the boundary.

Unit 5: As it relates to the northern boundary (and common boundary with Unit 6) due to being a duplex by a maximum height of 1.32m for the length of the dwelling.

Unit 6: As it relates to the southern boundary (and common boundary with Unit 5) due to being a duplex by a maximum height of 1.32m for the length of the dwelling.

Unit 7: As it relates to the southern boundary with Lot 6 by a maximum vertical height of 3.25m for the length of the dwelling and to the northern boundary by 4.42m due to sitting wholly within the infringement and being a duplex unit.

Unit 8: As it relates to the southern boundary by 4.42m as it sits wholly within the recession plane being a duplex unit for the length of the dwelling and the northern boundary by a maximum vertical height of 2.11m for the length of the dwelling.

Unit 9: As it relates to the southern boundary by a

maximum vertical height of 0.736m and the eastern common boundary with Lot 10 by a maximum vertical height of 4.3m as it sits wholly within the recession plane.

Unit 10: As it relates to the western boundary with Lot 9 by a maximum vertical height of 4.3m and to the eastern boundary by a maximum vertical height of 2.17m for the length of the dwelling.

Unit 11: As it relates to the western boundary by a maximum vertical height of 1.59m and to the eastern/common boundary with Lot 12 by a maximum vertical height of 4.32m for the length of the dwelling.

Unit 12: As it relates to the western/common boundary with Lot 11 by a maximum vertical height of 4.32m and to the eastern boundary with the JOAL by a maximum vertical height of 1.86m for the length of the dwelling.

C. Building Length

- No building, other than a single dwelling unit, where it adjoins a residential or reserve zone shall be more than 15m long without:
- having a vertical or horizontal offset in plan of at least 2m; or
- ii. being confined within the arms of a 1500 angle formed by two lines intersecting at a common point on all site boundaries such that each line forms an angle of 150 with the boundary (see Figure DD1.2 or
- being offset from each other unit by not less than 25% of the width of the unit nearest the road, with a minimum offset of 2m (see Figure DD1.3); or
- iv. the written consent of the adjoining property owners, shall be obtained and submitted to the consent authority at the time a building consent is sought, or prior to the commencement of the activity.

Figure DD1.2 - Measurements of Building Length

Figure DD1.3 - Measurements of Building Length

D. Residential Protection Zone

a) No activity - including any building or

Complies – no dwelling will be greater than 15m in length.

	construction of any building - shall reduce the	
	vegetative cover visible from a public space	
	by more than 20%, where that vegetation is	
	identified as significant on the list of	
	Residential Protection zone sites.	
	b) No dwelling-unit or other structure shall be	
	erected in the front yard of any existing	
	dwelling-unit detailed for protection on any	
	site within the zone, where such a dwelling is	
	identified on the list of Residential Protection	
	zone sites.	
	c) No additional dwelling-unit may be erected in	
	the side yard of any existing dwelling-unit. d) Except for routine maintenance, there shall	
	be no addition to or alteration of the front or	
	side façade of any dwelling-unit or other	
	building detailed for protection in this zone,	
	where such a dwelling is identified as	
	significant on the list of Residential Protection	
	zone sites.	
	 e) No dwelling-unit or other building detailed for 	
	protection may be demolished, relocated or	
	site or removed from a site in this zone, where	
	such a dwelling is identified as significant on	
	the list of Residential Protection zone sites.	
E.	Storage	
0.29508		N/A
	a) For sites zoned Inner Residential between	N/A
37050	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse 	
220,500	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of 	
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods a materials other than those for sale shall be 	
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of 	
	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site so	
F.	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods a materials other than those for sale shall be stored on any uncovered portion of the site strat they are visible from a street, public place or residential or reserve zoned land. Building Materials	
F.	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods a materials other than those for sale shall be stored on any uncovered portion of the site strat they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between	
F.	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse	
F.	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior	
F.	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site street and they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be	
F.	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain	
	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site street and they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted concrete blocks.	
	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain	
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods a materials other than those for sale shall be stored on any uncovered portion of the site sthat they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 	N/A
	a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 (CT GS285086) and Kaiti 315 Block (CT	N/A
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 (CT GS285086) and Kaiti 315 Block (CT GS2D/1362) shall be permitted at an intensity 	N/A
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 (CT GS285086) and Kaiti 315 Block (CT GS2D/1362) shall be permitted at an intensity greater than one dwelling per hectare of 	N/A
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 (CT GS285086) and Kaiti 315 Block (CT GS2D/1362) shall be permitted at an intensity greater than one dwelling per hectare of land area, until the land is reticulated with 	N/A
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 (CT GS285086) and Kaiti 315 Block (CT GS2D/1362) shall be permitted at an intensity greater than one dwelling per hectare of land area, until the land is reticulated with water supply and wastewater services. The 	N/A
	 a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream, no goods of materials other than those for sale shall be stored on any uncovered portion of the site state that they are visible from a street, public place or residential or reserve zoned land. Building Materials a) For sites zoned Inner Residential between Grey Street, Awapuni Road, Customhouse Street and the Waikanae Stream the exterior of buildings shall not, after construction, be clad in unpainted corrugated iron or remain as unpainted concrete blocks. Sponge Bay Block a) No residential development or subdivision of the land legally described as Lot 2 DP 370338 (CT GS285086) and Kaiti 315 Block (CT GS2D/1362) shall be permitted at an intensity greater than one dwelling per hectare of land area, until the land is reticulated with 	N/A

Rule Table DD1.6.1 Permitted Activities		
		1.6.1(2)

Minimum Site Area

- a. Inner Residential zone: 350m² per dwellingunit or 280m² per dwelling-unit attached on one side to another dwelling-unit or 250m² per unit attached on two sides to other dwelling units (including vertically);
- b. General Residential & Residential Protection zones (reticulated sites only): 400m² per dwelling-unit or 320m² per unit attached on one side to another dwellingunit or 250m² per unit attached on two sides to other dwelling units (including vertically)

N/A

Does not comply - proposed site areas are as follows:

Lot 1: 156m2

Lot 2: 157m²

Lot 3: 343m²

Lot 4: 280m²

Lot 5: 217m²

Lot 6: 167m²

Lot 7: 114m²

Lot 8: 114m²

Lot 9: 144m² Lot 10: 118m²

Lot 11: 117m²

Lot 12: 118m²

N/A

- c. General Residential & Residential Protection zones (non-reticulated sites only): 1000m2 per dwelling-unit
- d. Residential Lifestyle zone: 3,000m² per dwelling unit
- e. Taruheru Subdivision Block All residential zones: 800m² per dwelling-unit provided that a dwelling-unit may be erected on a site less than 800m² in extent if the site was created by means of subdivision after 1 October 1994.
- f. All residential zones covered by a Site Caution Layer: 1000m² per dwelling-unit Note: Potential building sites in the Site Caution Layer may be required to have a geotechnical report to determine slope stability, pursuant to the Building Act 2004

N/A

N/A

N/A

Site Coverage

a. Maximum net area of any site which may be covered by buildings: 35%

Pre-Subdivision: Complies - Proposed coverage of overall site is 31.9%.

Post Subdivision: Does not comply - proposed site coverage are as follows:

Lot 1: 22.3%

Lot 2: 34%

Lot 3: 26.1%

Lot 4: 29.6%

Lot 5: 25.4%

Lot 6: 38.2%

Lot 7: 36.2%

Lot 8: 36.2%

Lot 9: 39.4%

Lot 10: 52.4%

Lot 11: 52.4% Lot 12: 29.5%

As above, Lots 6-11 do not comply.

b. Where a site within a residential zone abuts an access strip or right of way to an adjoining rear site, when calculating the site coverage of that site, that portion of the area of that access strip or right-of-way

N/A

- derived by applying the following formula may be added to the area of that site for the purpose of assessing the site coverage:
- c. Formula: Length of the boundary of contact multiplied by half the average width of the access strip or right-of-way as it exists along that boundary of contact.

Yard Distances

a. Front sites: Front yard: 4.5m Other yards: 2m

Pre-Subdivision: Does not comply – all proposed dwellings will meet the 4.5m front yard setback and 2m setback from side external boundaries.

Proposed storage sheds on Lots 2, 3 and 4 will infringe the 2m setback by 1m, 1.37m and 1.74m respectively.

Post Subdivision: Does not comply - The proposed front lots will not comply with side yards as follows:

Lot 10 - will infringe its eastern 2m side yard by 0.266m.

Lot 11 – will infringe its western 2m side yard by 0.356m.

Post Subdivision: Does not comply - Sites with no b. Rear sites: All yards: 3m street frontage become rear sites. Of which, the following infringements are generated:

> Lot 3 – the proposed dwelling will infringe the 3m setback with the JOAL by 0.15m for a length of 4.3m.

> Lot 5 - The proposed dwelling will infringe the 3m setback from the JOAL by 0.27m - 1.42m. Additionally, being a duplex the dwelling will sit wholly within the 3m setback of the northern boundary. The 1.2m² storage shed will additionally be within the 3m yard setback as it relates to the northern boundary being set back 1.8m.

> Lot 6 – the proposed dwelling will infringe the 3m setback along the JOAL by a maximum of 1.42m and as it relates to the northern boundary by a maximum of 1.77m. Additionally, being a duplex the dwelling will sit wholly within the 3m setback of the southern boundary. The 1.2m² storage shed will also be within the 3m yard setback as it relates to the southern boundary being setback 1.4m.

> Lot 7 – The proposed dwelling will infringe the 3m setback to the JOAL by 0.893m for the length of the dwelling and to the southern boundary by 1.66m. Additionally, being a duplex the dwelling will sit wholly within the 3m setback of the northern boundary.

> Lot 8 - The proposed dwelling will infringe the 3m setback to the JOAL by 0.893m for the length of the dwelling and to the northern boundary by 1.66m. Additionally, being a duplex the dwelling will sit wholly within the 3m setback of the southern boundary 1.3m.

26		N/A
d. e. f.	Front yard on Awapuni Road between Grey Street and Customhouse Street 4.5m provided that a building may be erected closer to or on any "Other yard" boundary or any yard boundary on a rear site if the written consent of the adjoining property owner is obtained and submitted to the consent authority at the time a building consent is sought, or prior to the commencement of the activity. Residential Lifestyle zone: All yards 4.5m Eaves, porches, bay or box windows, steps and chimneys may be located 0.6m within any yard area. Yard distances shall not be applied between a minor dwelling and the principal dwelling erected on the site. All yards adjacent to the Waikanae Stream 20m from MHWM	N/A
	rking Residential Protection zone: Parking spaces shall not be located in the front yard, other than on a vehicular accessway.	N/A
	Each dwelling-unit, on sites comprising more than one dwelling-unit, shall be provided with 15m² of exclusive outdoor service area, which shall be screened from adjoining sites and outdoor living spaces and exclude any area set aside for outdoor living space.	Pre-Subdivisions: Complies – All dwellings are provided with a service area between 15m ² – 17.7m ² in area. Post Subdivision: N/A

Appendix 8

Design Process Overview

Design Process Overview - 556-560 Aberdeen Road, Gisborne - 12 Lot residential development proposal

First 5% Design

The architect was briefed with 13x units on this development site, and the below was presented to Kainga Ora for support. A typology mix of 2 & 3 BR units was supported at this location.

KO provided the following feedback:

- A single-vehicle crossing is preferred.
- Vehicle turning for lots 1,2 & 5 too tight.
- Lot 13 parking on road not acceptable.
- CPTED concerns
- Urban designers suggested overdevelopment where one vehicle crossing is removed and one unit.

Second 5% design:

This design was workshopped with KO over a team meeting with their UD team. This design was also provided to GDC for initial feedback. Note that the proposal reduced the number of lots by ${\bf 1}$ to improve the overall design.

KO provided the following feedback:

- Pedestrian access to the south to be more defined.
- Adjust the position of houses to maximise northern ODLs. We are governed by set-back DP rules so we did this where we could.
- Swap SW single-story duplex with SW two-story duplex and rotate 90 degrees.
- Generally happy with the design.

GDC feedback:

- Awhina White indicated the proposal likely to be assessed as a restricted discretionary activity with only breaches in density and site coverage (Appendix 1).
- Barry Sanders provided engineering feedback and had a discussion with Johan Ehlers about our proposed solution. The servicing solution is in line with Barry's recommendation. (Correspondence included at Appendix 2).

- Majority of feedback from KO was around internal layouts and washing line/rubbish bin positions, landscaping, and fencing, which we could address all queries.
 - A further workshop with their UD team allowed us to progress to the next stage of design.

First 15% design:

Changes from 5% to 15% were more internal and relocation of bins and washing lines etc.

- Resolution required to address CPTED issues for lots 9&10.
- Review of landscaping detail

Incorporating KO's final comments, we arrived a t an approved design, which we received a business case approval for and contracted to deliver subject to all approvals from local authorities.

The 30% design is what we have landed at where KO is happy and we still largely comply with council DP rules.

The engineering solution works and is in line with council recommendations.

This design was based on all previous feedback from Kainga Ora's urban design team, whilst maintaining compliance with as many DP controls as possible.

The Stradegy team has also provided feedback throughout the various 5% design stages, which helped shape the final proposal.

The 30% design set was reintroduced to Council at a pre-app meeting on 13 November 2023 with Principal Planner Awhina White. The feedback received was largely around the proposed density and information requirements within the application report to support the proposed infringements to density. No particular changes were requested to the design.

Appendix 1 – Pre-Application Correspondence with Awhina White

From: Awhina White

To: Mitch Jackson; Barry Sanders

Cc: Esta Kowhai; James Jenkins; Paul O"Shaughnessy; Johan Ehlers

Subject: RE: 556-560 Aberdeen Road, Gisborne Date: Wednesday, 28 June 2023 1:02:14 pm

Attachments: jmage002.png image003.jpg

Hi Mitch

The subject site is zoned General Residential, is covered by the Heritage Alert Overlay and is located on a Collector Road.

The overall site area of both properties is 2670m2.

- Within the General Residential zone, under the minimum site area requirements, you can
 construct one dwelling on a site containing not less than 400m2 or 320m2 per unit attached on
 one side to another. Based on the drawings submitted, the proposal exceeds the minimum site
 area requirements. Therefore, consent is required under Rule 1.6.1(17) of the Tairawhiti District
 Plan as a Restricted Discretionary activity.
- 2. The minimum front yard setback requirement is 4.5m. The drawings submitted show an infringement of patios located in the front yard. I am assuming that the eaves are the only other encroachment, and all other buildings comply with the minimum setbacks. Therefore, consent is required under Rule 1.6.1(17) of the Tairawhiti District Plan as a Restricted Discretionary activity.
- 3. The Tairawhiti District Plan requires that sites are not covered by more than 35% of buildings. The drawings submitted show an infringement of this requirement. Therefore, consent is required under Rule 1.6.1(17) of the Tairawhiti District Plan as a Restricted Discretionary activity.
- 4. I'm not sure based on the plans if the areas shown for outdoor living areas are the dedicated spaces. If they are, then some sites do not meet the minimum requirement of 15m2 of outdoor service area per dwelling. Again Rule 1.6.1(17) of the Tairawhiti District Plan would be triggered as a Restricted Discretionary activity.
- Based on the plans submitted the height of the buildings seem to be compliant with the requirements.
- 6. The plans show a total of 12 units/dwellings to be serviced of the accessway. Under the Tairawhiti District Plan the requirement is that where 10 dwellings units are located on an accessway then it should be vested in the Council as a public Road. You will need to apply for a dispensation of this requirement. The accessway, carparking, maneuvering areas and vehicle crossing will need to be sealed. Again Rule 1.6.1(17) of the Tairawhiti District Plan would be triggered as a Restricted Discretionary activity as this is a matter under works, services and infrastructure.
- 7. As part of your resource consent you will need to submit your engineered plans for connecting to wastewater, water and stormwater. The application should also include your assessment of connecting to electricity and confirmation from a telecommunications provider that wireless services (coverage) is available at the site.
- 8. As the property is covered by the Heritage Alert Overlay, an advice note would be imposed on the consent advising that in the event any archaeological deposits are encountered you would need stop works immediately and notify Heritage New Zealand and the relevant iwi authority.
- 9. Dependent on the planner's assessment written consents of neighboring properties may be required. I am unable to make this determination at this stage. There would always be an option of limited notification in the event you were unsuccessful in obtaining these.

Barry Sanders our Development Engineer will respond to the engineering requirements for wastewater,

water, stormwater, roading, impervious surfaces, vehicle crossing, accessway, carparking and maneuvering.

Should you require anything further, please do not hesitate to contact me.

Regards

Awhina White

Principal Planner

Te Kaunihera O Te Tairāwhiti - Gisborne District Council

E: <u>Awhina.White@gdc.govt.nz</u> | P: +64 6 867 2049, 0800 653 800 | D: 06 869 2932 | M: 027 254 7707

A: 15 Fitzherbert Street, Gisborne | Web | Fb | App

The content of this email is confidential and intended for the recipient specified in message only. It is strictly forbidden to share any part of this message with any third party without written consent from the sender. If you received this message by mistake please reply to inform us so we can prevent recurrence and promptly delete it.

From: Mitch Jackson <mitch@twproperty.co.nz>

Sent: Wednesday, June 28, 2023 11:11 AM

To: Awhina White <Awhina.White@gdc.govt.nz>; Barry Sanders <Barry.Sanders@gdc.govt.nz>

Cc: Esta Kowhai <esther.kowhai@gdc.govt.nz>; James Jenkins <james.jenkins@twproperty.co.nz>; Paul

O'Shaughnessy <paul@stradegy.co.nz>; Johan Ehlers <Johan@infir.nz>

Subject: 556-560 Aberdeen Road, Gisborne

Hi Team,

Hope you're well.

We have recently secured a conditional contract for 556-560 Aberdeen Road, Gisborne.

We're proposing to remove/ demolish the existing dwellings and build 12x units

- 8x 2 BR two-story
- 3x 2 BR one-story
- 1x 3 BR one-story

Please see attached design 5% design for reference.

We intend to on-sell this development to Kainga Ora, who are initially supportive of the design.

Can I please request feedback on the attached design from both an engineering & planning perspective to outline any red flags in obtaining an RC.

In terms of engineering, we are proposing the following to service the development.

- Wastewater
- We're proposing to connect into the existing DN150 that runs along Aberdeen Road. We'll extend the DN150 up the central JOAL and install individual 100mm lateral connections.
- Are there any known any known capacity issues with the existing network that we need to be aware of?

- Stormwater
- The existing ground level on the southern part of the site is 1m lower than at the road boundary, which makes raising the site not a viable solution.
- We're proposing to discharge ground surface areas to the existing DN300 main in Aberdeen Road, however, if this is not a viable solution, we intend to utilise the existing soakage soils within the area.
- Therefore, we are proposing to have roof runoff discharge to the existing main in Aberdeen Road, then have surface water run-off discharge to soak pits and to the south (where it currently drains to).
- Please note, we intend to undertake the required soakage testing and intend to attenuate all SW to pre-development flows.
- The attached servicing due diligence report (based on 13x units) includes pre & post-development flow calculations as well as required attenuation calculations to confirm what storage we require. We are proposing to reduce this to 12 (as per the attached design), as we believe this is better outcome overall
- Would the above proposed solution be acceptable to GDC?
- Water
- We're proposing to connect into the existing DN100 main along Aberdeen Road and install a rider DN63 rider up the JOAL, then have individual connections to each lot with manifolds outside each boundary.
- The firefighting capacity requirements are also outlined in the servicing DD report attached. The
 existing infrastructure should be sufficient.
- Power & Comms
- Proposing to install roadside pedestals for both power & fibre and install individual connections to each lot.

Please note the pre-lim DD servicing report attached is based on an alternative scheme which has 13x units & two accessways, not 12x units & a central access. The calculations will not be accurate, however; what we are now proposing will have less of an effect than the 13x lot design, as there are less impermeable surfaces.

Please let me know if you have any queries regarding the above proposal. I'm more than happy to discuss further.

Regards,

Mitch Jackson

Development Manager

Mob: +64 21 261 1257 14 West Quay, Ahuriri Napier, 4110 | New Zealand

footer.jpg	

This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please request a hard-copy version.

Appendix 2 – Pre-Application Correspondence with Barry Sanders Regarding Stormwater

From: Johan Ehlers To: Mitch Jackson Isaac Aitken Cc:

Subject: 550 / 560 Aberdeen Road soakage Date: Thursday, 13 July 2023 12:33:02 pm

Attachments: image001.png

image004.png

Caution: This message was sent from outside your organisation. Please take care when clicking links or opening attachments. When in doubt, contact your IT Support.

Hi Mitch,

Isaac reminded me this morning that I need to go back to you about my discussion with Barry Sanders about the soakage design.

I called Barry on the 6th of July and found him in Australia. It was 9:35 am here so it must have been very early where he was.

Barry confirmed that the robustness he is looking for is in terms of:

- 1 Using a lower infiltration rate for design purposes than the bserved infiltration rate. We are proposing to use 500mm/hr against the 1,500mm observed rate.
- 2 Barry agreed that the groundwater table is currently as high as it gets and that we can use the level as it was observed.

The test holes did not reach the groundwater table, although the one at the rear of the property where the 1,500mm/hr infiltration rate was measured was close to the groundwater table depth. We should just work with the depth of the test hole because we know that was still above the groundwater table.

Soakage is therefore workable at this site. Barry wants all roof water to be discharged to Aberdeen Road, so it is only ground surfaces on the part of the site that will drain away from Aberdeen Road that will be serviced by the soakage pit.

Regards

Caution: This message was sent from outside your organisation. Please take care when clicking links or opening attachments. When in doubt, contact your IT Support.

In heavy rain in excess of the 1 in 25 year level this catchment can surcharge.

I would make sure the guly traps are as high as possible and that the individual waste connections have vents (TV) that cannot be isolated by high sewer levels.

From: Barry Sanders < Barry.Sanders@gdc.govt.nz>

Sent: Friday, 30 June 2023 4:42 PM

To: Mitch Jackson <mitch@twproperty.co.nz>; Awhina White <Awhina.White@gdc.govt.nz>

Ct: Esta Kowhai <esther.kowhai@gdc.govt.nz>; James Jenkins james.jenkins@ptwproperty.co.nz>; Jaul O'Shaughnessy <a href="mailto:james.jam

Milch, my comments in red be

From: Mitch Jackson <mitch@two erty.co.nz>

Sent: Thursday, June 29, 2023 1:18 PM

To: Awhina VMHE @adc.govt.nz>; Barry Sanders Sarry Sanders@gdc.govt.nz>
Cc: Esta Kowhai <a href="mailto:sther.kw/mailto:sther.

Thanks for your quick response, much appreciated it

I look forward to Barry's email.

Mitch Jackson

evelopment Mana 14 West Quay, Ahuriri Napier, 4110 | New Zealand

This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should elementarily, distribute or capy this send. These notify the sender Inmestiality by e-mail if you have received this e-mail by whiteles and determination your synthem. E-mail transmission cannot be parameter to be secure or error free aniformation could be intercepted, not contain the parameter of the count in the parameter of the parameter

From: Awhina White <

Sent: Wednesday, June 28, 2023 1:02 PM

To: Mitch Jackson mich@hyproperty.co.pu; Barry Sanders mich@hyproperty.co.pu; Paul O'Shaughnessy mich@hyproperty.co.pu; Johan Ehlers mich

Caution: This message was sent from outside your organisation. Please take care when clicking links or opening attachments. When in doubt, contact your IT Support.

HI Mitch

The subject sile is zoned General Residential, is covered by the Heritage Alart Overlay and is located on a Collector Road.

The overall site area of both properties is 2670m2.

- 1. Within the General Residential zone, under the minimum site area requirements, you can construct one dwelling on a site containing not less than 400m2 or 320m2 per unit attached on one side to another. Based on e drawings submitted, the proposal exceeds the minimum site area requirements. Therefore, consent is required under Rule 1.6.1 (17) of the Tairawhilli District Plan as a Restricted Discretionary activity.
- The minimum front yard setback requirement is 4.5m. The drawings submitted show on infringement of patios located in the front yard. I am assuming that the caves are the only other encroachment, and all other buildings comply with the minimum setbacks. Therefore, consent is required under Rule 1.6.1(17) of the Toirowhill District Plan as a Restricted Discretionary activity.
- 3. The Tairawhiti District Plan requires that sites are not covered by more than 35% of buildings. The drawings submitted show an infingement of this requirement. Therefore, consent is required under Rule 1.6.1(17) of the Tairawhiti District Plan as a Restricted Discretionary activity,
- 4. I'm not sure based on the plans if the areas shown for outdoor living areas are the dedicated spaces. If they are, then some sites do not meet the minimum requirement of 15m2 of autdoor service area per dwelling.

 Agrin Rule 1.6.1[17] of the Tairawhill District Plan would be Iriggered as a Restricted Discretionary activity.
- ed on the plans submitted the height of the buildings seem to be compliant with the requirem
- 6. The plans show a total of 12 units/dwellings to be serviced of the accessway. Under the Tairawhill District Plan the requirement is that where 10 dwellings units are located on an access the Council as a public Road. You will need to apply for a dispensation of this requirement. The accessmost, corporating, manevering areas and vehicle crossing will need to be sealed. Again Rule 1.6.1(7) of the Tairawhill District Plan would be higgered as a Restricted Discretionary activity as this is a matter under works, services and infrastructure. Minimum trafficable widths will need to be maintained to allow for emerger vehicle access and no parking either side of the internal access.
- 7. As part of your resource consent you will need to submit your engineered plans for connecting to wastewater, water and stammwater. The application should also include your assessment of connecting to electricity and confirmation from a telecommunications provider that wheless services (coverage) is available at the site.
- 8. As the property is covered by the Heritage Alert Overlay, an advice note would be imposed on the consent advising that in the event any archaeological deposits are encountered you would need stop works immediately and notify Heritage New Zealand and the relevant iwi authority
- 9. Dependent on the planner's assessment written consents of neighboring properties may be required, I am unable to make this determination at this stage. There would always be an option of limited notification in the nt you were unsuccessful in obtaining the

Barry Sanders our Development Engineer will respond to the engineering requirements for wastewater, water, stamwater, roading, impervious surfaces, vehicle crossing, accessway, corporting and maneuvering,

Should you require anything further, please do not hesitate to contact me.

Regards

Awhina White

1

Te Kaurihera O Te Tairāwhii - Gisbome District Council

E Authins.White@gdc.gord.nz | 8" +44 6 867 2019, 0800 653 800 | 0: 06 869 2932 | M: 027 254 7707

A: 15 Fitzherbert Street, Gisborne | Wash | Eh | Ang

The content of this email is confidential and intended for the recipient specified in message only. It is strictly factioiden to share any part of this message with any third party without written consent from the sender. If you received this message only and internal security to inform us so we can prevent recurrence and promptly delete it.

Sent: Wednesday, June 28, 2023 11:11 AM

To: Awhina With te Authina Withte @gdc_govt.nz>; Barry Sanders & Barry Sanders @gdc_govt.nz>
Ct: Esta Kowhail "> James Jenkins & James Jenkins & Jenkins &

Hi Team.

Hope you're well.

We have recently secured a conditional contract for 556-560 Aberdeen Road, Gisborne.

We're proposing to remove/ demolish the existing dwellings and build 12x units

• 1x 3 BR one-story

Please see attached design 5% design for reference.

We intend to on-sell this development to Kainga Ora, who are initially supportive of the design.

Can I please request feedback on the attached design from both an engineering & planning perspective to outline any red flags in obtaining an RC.

- We're proposing to connect into the existing DN150 that runs along Aberdeen Road. We'll extend the DN150 up the central JOAL and install individual 100mm lateral connections.

 Are there any known any known capacity issues with the existing network that we need to be aware of? Please contact Phil Dodds re this issue we have had instances where there are some additional engineering constraints. needed in the connection design.
- Stormwater
 The existing ground level on the southern part of the site is 1m lower than at the road boundary, which makes raising the site not a viable solution.
- We're proposing to discharge ground surface areas to the existing DN300 main in Aberdeen Road, however, if this is not a viable solution, we intend to utilise the existing soakage soils within the area. This needs careful design as soakage holes are not a good long-term solution generally becoming dysfunctional after a short number of years. We would prefer a more robust long term solution esp with ground water levels being high in winter (this should be tested).
- Therefore, we are proposing to have roof runoff discharge to the existing main in Aberdeen Road, then have surface water run-off discharge to soak pits and to the south (where it currently drains to).

Interesting, we are programs to raive roor running concernage to the existing main in Aperdoen Road, men have surrative water run-ort discharge to soak pits and to the south (where it currently drains to).
 Please note, we intend to undertake the required soakage testing and intend to attenuate all SW to pre-development flows. Comments as above
 The attached servicing due diligence report (based on 13x units) includes pre & post-development flow calculations as well as required attenuation calculations to confirm what storage we require. We are proposing to reduce this to 12 (as per the attached design), as we believe this is better outcome overall.
 Would the above proposed solution be acceptable to GDC?
 The image below shows copacity of stormwater for the 10% APP storm ovent. No capacity left in Aberdoen Rd but there is some in Asquith Street. I suggest you over attenuate the roof areas for the 1% APP storm to Aberdoen and some soakage/if ground water testing allows this as viable) - or you will need to pump.

- We're proposing to connect into the existing DN100 main along Aberdeen Road and install a rider DN63 rider up the JOAL, then have individual connections to each lot with manifolds outside each boundary.
 The firefighting capacity requirements are also outlined in the servicing DP report attached. The existing infrastructure should be sufficient, Please contact audith Robertson re this.
- · Power & Comms
- . Proposing to install roadside pedestals for both power & fibre and install individual connections to each lot, ves

red is based on an alternative scheme which has 13x units & two accessways, not 12x units & a central access. The calculations will not be accurate, ho Please note the pre-lim DD servicing report atta proposing will have less of an effect than the 13x lot design, as there are less impermeable surfaces.

Please let me know if you have any queries regarding the above proposal. I'm more than happy to discuss further.

Mitch Jackson

Development Manager Mol: +64 21 261 1257 14 West Quay, Aburiri Napler, 4110 | New Zealand

This message contains confidential information and is intended only for the individual names. If you are not the named addressee you should not allower less, that there is captured to be exact. Please notify this sends transcribed by e-mail if you have reached the e-mail by e-instead and dates this cereal from your system. Four literamisers cannot be guaranteed to be secure or cere-free as information could be intercreted, computed, laws, deathours, similar four intercretion. The sends therefore does not except facility for any errors or consistors in the contents of this message, which since as a result of end alternational. In efforts the contents of this message, which since as a result of end alternational. In efforts the results of the contents of the contents of the message which the as a result of end alternational. In efforts the results of the contents of the message which are as a result of end alternational. In efforts the results of the contents of the message which see as results of end alternational for end of the contents of the contents of the message which see as results of end alternational. In efforts the results of the contents of the message which see as results of end alternational for end of end and the contents of the contents of the contents of the message which seems as a result of end alternational for end of end and the contents of the cont